Dual function of a high-contrast hydrophobic–hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments


In spite of a continuous increase in their power conversion efficiency (PCE) and an economically viable fabrication process, organic–inorganic perovskite solar cells (PSCs) pose a significant problem when used in practical applications: They show fast degradation of the PCE when exposed to very humid environments. In this study, the stability of PSCs under very humid conditions is greatly enhanced by coating the surface of the PSC devices with a multi-layer film consisting of ultrahydrophobic and relatively hydrophilic layers. A hydrophobic composite of poly(methyl methacrylate) (PMMA), polyurethane (PU), and SiO2 nanoparticles successfully retards the water molecules from very humid surroundings. Also, the hydrophilic layer with moderately PMMA captures the residual moisture within the perovskite layer; subsequently, the perovskite layer recovers. This dual function of the coating film keeps the PCE of PSCs at 17.3% for 180 min when exposed to over 95% humidity.

This is a preview of subscription content, access via your institution.


  1. [1]

    Son, D.-Y.; Lee, J.-W.; Choi, Y. J.; Jang, I.-H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D. et al. Selfformed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 2016, 1, 16081.

    Article  Google Scholar 

  2. [2]

    Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72.

    Article  Google Scholar 

  3. [3]

    Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.

    Article  Google Scholar 

  4. [4]

    Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

    Article  Google Scholar 

  5. [5]

    Jung, H. S.; Park, N.-G. Perovskite solar cells: From materials to devices. Small 2015, 11, 10–25.

    Article  Google Scholar 

  6. [6]

    Christians, J. A.; Herrera, P. A. M.; Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530–1538.

    Article  Google Scholar 

  7. [7]

    Niu, G. D.; Li, W. Z.; Meng, F. Q.; Wang, L. D.; Dong, H. P.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705–710.

    Article  Google Scholar 

  8. [8]

    Yuan, Y. B.; Wang, Q.; Shao, Y. C.; Lu, H. D.; Li, T.; Gruverman, A.; Huang, J. S. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures. Adv. Energy Mater. 2016, 6, 1501803.

    Article  Google Scholar 

  9. [9]

    Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293.

    Article  Google Scholar 

  10. [10]

    Wei, D.; Wang, T. Y.; Ji, J.; Li, M. C.; Cui, P.; Li, Y. Y.; Li, G. Y.; Mbenguea, J. M.; Song, D. D. Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface. J. Mater. Chem. A 2016, 4, 1991–1998.

    Article  Google Scholar 

  11. [11]

    D’Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.

    Google Scholar 

  12. [12]

    Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

    Article  Google Scholar 

  13. [13]

    Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumü ller, T.; Christoforod, M. G.; McGehee, M. D. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 2014, 7, 3690–3698.

    Article  Google Scholar 

  14. [14]

    Chen, H.-W.; Sakai, N.; Ikegami, M.; Miyasaka, T. Emergence of hysteresis and transient ferroelectric response in organolead halide perovskite solar cells. J. Phys. Chem. Lett. 2015, 6, 164–169.

    Article  Google Scholar 

  15. [15]

    Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddina, M. K.; Grä tzel, M. Understanding the ratedependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004.

    Article  Google Scholar 

  16. [16]

    Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

    Article  Google Scholar 

  17. [17]

    Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

    Article  Google Scholar 

  18. [18]

    Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

    Article  Google Scholar 

  19. [19]

    Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 2014, 14, 5561–5568.

    Article  Google Scholar 

  20. [20]

    Hwang, I.; Jeong, I.; Lee, J.; Ko, M. J.; Yong, K. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 2015, 7, 17330–17336.

    Article  Google Scholar 

  21. [21]

    Li, X.; Dar, M. I.; Yi, C. Y.; Luo, J. S.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H. W.; Grä tzel, M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ?-ammonium chlorides. Nat. Chem. 2015, 7, 703–711.

    Article  Google Scholar 

  22. [22]

    You, J. B.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.; Chang, W.-H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81.

    Article  Google Scholar 

  23. [23]

    Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147.

    Article  Google Scholar 

  24. [24]

    Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885.

    Article  Google Scholar 

  25. [25]

    Liu, Z. Y.; Sun, B.; Shi, T. L.; Tang, Z. R.; Liao, G. L. Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. J. Mater. Chem. A 2016, 4, 10700–10709.

    Article  Google Scholar 

  26. [26]

    Wei, Z. H.; Zheng, X. L.; Chen, H. N.; Long, X.; Wang, Z. L.; Yang, S. H. A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. J. Mater. Chem. A 2015, 3, 16430–16434.

    Article  Google Scholar 

  27. [27]

    Kim, J. H.; Liang, P.-W.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K.-Y. Highperformance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copperdoped nickel oxide hole-transporting layer. Adv. Mater. 2015, 27, 695–701.

    Article  Google Scholar 

  28. [28]

    Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 2015, 6, 432–437.

    Article  Google Scholar 

  29. [29]

    Zheng, L. L.; Chung, Y.-H.; Ma, Y. Z.; Zhang, L. P.; Xiao, L. X.; Chen, Z. J.; Wang, S. F.; Qu, B.; Gong, Q. H. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 2014, 50, 11196–11199.

    Article  Google Scholar 

  30. [30]

    Liu, J.; Wu, Y. Z.; Qin, C. J.; Yang, X. D.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W. Q.; Chen, W.; Han, L. Y. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 2014, 7, 2963–2967.

    Article  Google Scholar 

  31. [31]

    Li, R.; Xiang, X.; Tong, X.; Zou, J.; Li, Q. Wearable doubletwisted fibrous perovskite solar cell. Adv. Mater. 2015, 27, 3831–3835.

    Article  Google Scholar 

  32. [32]

    Kim, B. J.; Kim, D. H.; Kwon, S. L.; Park, S. Y.; Li, Z.; Zhu, K.; Jung, H. S. Selective dissolution of halide perovskites as a step towards recycling solar cells. Nat. Commum. 2016, 7, 11735.

    Article  Google Scholar 

  33. [33]

    Moghbelli, E.; Banyay, R.; Sue, H.-J. Effect of moisture exposure on scratch resistance of PMMA. Tribol. Int. 2014, 69, 46–51.

    Article  Google Scholar 

  34. [34]

    Tan, K. T.; Vogt, B. D.; White, C. C.; Steffens, K. L.; Goldman, J.; Satija, S. K.; Clerici, C.; Hunston, D. L. On the origins of sudden adhesion loss at a critical relative humidity: Examination of bulk and interfacial contributions. Langmuir 2008, 24, 9189–9193.

    Article  Google Scholar 

  35. [35]

    Flory, P. J.; Rehner, J. Statistical mechanics of crosslinked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11, 512–520.

    Google Scholar 

  36. [36]

    Morsch, S.; Lyon, S.; Greensmith, P.; Smith, S. D.; Gibbon, S. R. Mapping water uptake in organic coatings using AFM-IR. Faraday Discuss. 2015, 180, 527–542.

    Article  Google Scholar 

  37. [37]

    Athawale, V. D.; Kolekar, S. L.; Raut, S. S. Recent developments in polyurethanes and poly(acrylates) interpenetrating polymer networks. J. Macromol. Sci. 2003, 43, 1–26.

    Article  Google Scholar 

  38. [38]

    Gupta, N.; Srivastava, A. K. Interpenetrating polymer networks: A review on synthesis and properties. Polym. Int. 1994, 35, 109–118.

    Article  Google Scholar 

  39. [39]

    Athawale, V.; Kolekar, S. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and polymethyl methacrylate. Eur. Polym. J. 1998, 34, 1447–1451.

    Article  Google Scholar 

  40. [40]

    Kumar, H.; Kumar, A. A.; Siddaramaiah. Physico-mechanical, thermal and morphological behaviour of polyurethane/ poly(methyl methacrylate) semi-interpenetrating polymer networks. Polym. Degrad. Stabil. 2006, 91, 1097–1104.

    Article  Google Scholar 

  41. [41]

    Akay, M.; Rollins, S. N. Polyurethane-poly(methyl methacrylate) interpenetrating polymer networks. Polymer 1993, 34, 1865–1873.

    Article  Google Scholar 

  42. [42]

    Zhu, A. P.; Shi, Z. H.; Cai, A. Y.; Zhao, F.; Liao, T. Q. Synthesis of core–shell PMMA–SiO2 nanoparticles with suspension–dispersion–polymerization in an aqueous system and its effect on mechanical properties of PVC composite. Polym. Test. 2008, 27, 540–547.

    Article  Google Scholar 

  43. [43]

    N’Diaye, M.; Pascaretti-Grizon, F.; Massin, P.; Baslé, M. F.; Chappard, D. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy. Langmuir 2012, 28, 11609–11614.

    Article  Google Scholar 

  44. [44]

    Yang, M. J.; Di, Z. F.; Lee, J.-K. Facile control of surface wettability in TiO2/poly(methyl methacrylate) composite films. J. Colloid Interface Sci. 2012, 368, 603–607.

    Article  Google Scholar 

Download references


This work was supported from the Global Frontier R&D Program on Center for Multiscale Energy System, Republic of Korea (No. 2012M3A6A7054855) and National Science Foundation (Nos. CMMI-1333182 and EPMD-1408025).

Author information



Corresponding authors

Correspondence to Hyun Suk Jung or Jung-Kun Lee.

Electronic supplementary material


Dual function of a high-contrast hydrophobic–hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoo, J.S., Han, G.S., Lee, S. et al. Dual function of a high-contrast hydrophobic–hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. Nano Res. 10, 3885–3895 (2017). https://doi.org/10.1007/s12274-017-1603-6

Download citation


  • perovskite solar cell
  • stability
  • surface coating
  • ultrahydrophobic
  • self-recovery