Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries

Abstract

Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g–1 was achieved for the LiCoO2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li+/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li+/Li.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Johnson, B. A.; White, R. E. Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70, 48–54.

    Article  Google Scholar 

  2. [2]

    Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

    Article  Google Scholar 

  3. [3]

    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  Google Scholar 

  4. [4]

    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Google Scholar 

  5. [5]

    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  6. [6]

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.

    Article  Google Scholar 

  7. [7]

    Cho, J.; Kim, Y. J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788–3791.

    Article  Google Scholar 

  8. [8]

    Chen, Z. H.; Dahn, J. R. Studies of LiCoO2 coated with metal oxides. Electrochem. Solid-State Lett. 2003, 6, A221–A224.

    Article  Google Scholar 

  9. [9]

    Chen, Z. H.; Dahn, J. R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090.

    Article  Google Scholar 

  10. [10]

    Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. Electrochem. Soc. 2010, 157, A75–A81.

    Article  Google Scholar 

  11. [11]

    Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; An, Y. F.; Dillon, A. C.; George, S. M.; Lee, S. H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414–418.

    Article  Google Scholar 

  12. [12]

    Cho, J.; Kim, Y. J.; Kim, T. J.; Park, B. Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem., Int. Ed. 2001, 40, 3367–3369.

    Article  Google Scholar 

  13. [13]

    Cho, J.; Kim, Y. J.; Park, B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J. Electrochem. Soc. 2001, 148, A1110–A1115.

    Article  Google Scholar 

  14. [14]

    Park, J. S.; Mane, A. U.; Elam, J. W.; Croy, J. R. Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. Chem. Mater. 2015, 27, 1917–1920.

    Article  Google Scholar 

  15. [15]

    Jung, Y. S.; Lu, P.; Cavanagh, A. S.; Ban, C. M.; Kim, G. H.; Lee, S. H.; George, S. M.; Harris, S. J.; Dillon, A. C.Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Adv. Energy Mater. 2013, 3, 213–219.

    Article  Google Scholar 

  16. [16]

    Cao, H.; Xia, B. J.; Zhang, Y.; Xu, N. X. LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics 2005, 176, 911–914.

    Article  Google Scholar 

  17. [17]

    Park, J. S.; Meng, X. B.; Elam, J. W.; Hao, S. Q.; Wolverton, C.; Kim, C.; Cabana, J. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 2014, 26, 3128–3134.

    Article  Google Scholar 

  18. [18]

    Liu, J.; Banis, M. N.; Li, X. F.; Lushington, A.; Cai, M.; Li, R. Y.; Sham, T. K.; Sun, X. L. Atomic layer deposition of lithium tantalate solid-state electrolytes. J. Phys. Chem. C 2013, 117, 20260–20267.

    Article  Google Scholar 

  19. [19]

    Mäntymäki, M.; Hämäläinen, J.; Puukilainen, E.; Sajavaara, T.; Ritala, M.; Leskela, M. Atomic layer deposition of LiF thin films from Lithd, Mg(thd)2, and TiF4 precursors. Chem. Mater. 2013, 25, 1656–1663.

    Article  Google Scholar 

  20. [20]

    Kozen, A. C.; Pearse, A. J.; Lin, C. F.; Noked, M.; Rubloff, G. W. Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 2015, 27, 5324–5331.

    Article  Google Scholar 

  21. [21]

    Glass, A. M.; Nassau, K. Lithium ion conduction in rapidly quenched Li2O-Al2O3, Li2O-Ga2O3, and Li2O-Bi2O3 glasses. J. Appl. Phys. 1980, 51, 3756–3761.

    Article  Google Scholar 

  22. [22]

    Aaltonen, T.; Nilsen, O.; Magrasó, A.; Fjellvåg, H. Atomic layer deposition of Li2O-Al2O3 thin films. Chem. Mater. 2011, 23, 4669–4675.

    Article  Google Scholar 

  23. [23]

    Hu, Y.; Ruud, A.; Miikkulainen, V.; Norby, T.; Nilsen, O.; Fjellvag, H. Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition. RSC Adv. 2016, 6, 60479–60486.

    Article  Google Scholar 

  24. [24]

    George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.

    Article  Google Scholar 

  25. [25]

    Wang, H. F.; Jang, Y. I.; Huang, B. Y.; Sadoway, D. R.; Chiang, Y. M. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 473–480.

    Article  Google Scholar 

  26. [26]

    Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. Solid-state electrochemical kinetics of Li-ion intercalation into Li1–xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J. Electrochem. Soc. 1999, 146, 1279–1289.

    Article  Google Scholar 

  27. [27]

    Ho, C.; Raistrick, I. D.; Huggins, R. A. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 1980, 127, 343–350.

    Article  Google Scholar 

  28. [28]

    Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. AC impedance of the Li(1–x)CoO2 electrode. Solid State Ion. 1986, 18–19, 794–798.

    Article  Google Scholar 

  29. [29]

    Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. AC impedance analysis of polycrystalline insertion electrodes: Application to Li1–xCoO2. J. Electrochem. Soc. 1985, 132, 1521–1528.

    Article  Google Scholar 

  30. [30]

    Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 1996, 83, 167–173.

    Article  Google Scholar 

  31. [31]

    Baddour-Hadjean, R.; Pereira-Ramos, J. P. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 2010, 110, 1278–1319.

    Article  Google Scholar 

  32. [32]

    Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V. The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 1988, 21, L199–L201.

    Article  Google Scholar 

  33. [33]

    Park, Y.; Kim, N. H.; Kim, J. M.; Kim, Y. C.; Jeong, Y. U.; Lee, S. M.; Choi, H. C.; Jung, Y. M. Surface reaction of LiCoO2/Li system under high-voltage conditions by X-ray spectroscopy and two-dimensional correlation spectroscopy (2D-COS). Appl. Spectrosc. 2011, 65, 320–325.

    Article  Google Scholar 

  34. [34]

    Park, Y.; Kim, N. H.; Kim, J. Y.; Eom, I. Y.; Jeong, Y. U.; Kim, M. S.; Lee, S. M.; Choi, H. C.; Jung, Y. M. Surface characterization of the high voltage LiCoO2/Li cell by X-ray photoelectron spectroscopy and 2D correlation analysis. Vib. Spectrosc. 2010, 53, 60–63.

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was performed at the Stanford Nano Shared Facilities (SNSF) and Stanford Nanofabrication Facility (SNF). We thank Allen Pei, Yongming Sun, and Kipil Lim for insightful discussion, Michelle Rincon, Christopher Neumann and Feifei Lian for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhao, J., Liu, Y. et al. Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Res. 10, 3754–3764 (2017). https://doi.org/10.1007/s12274-017-1588-1

Download citation

Keywords

  • Lithium ion batteries
  • lithium cobalt oxide
  • atomic layer deposition