Skip to main content
Log in

Simple, fast, label-free, and nanoquencher-free system for operating multivalued DNA logic gates using polythymine templated CuNPs as signal reporters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Boolean logic devices play a key role in both traditional and nontraditional molecular logic circuits. This kind of binary logic, in which each bit is coded by (0, 1), has only two output states—on or off (or high/low). Because of the finite computing capacity and variation, it is facing challenges from multivalued logic gates while processing high-density or uncertain/imprecise information. However, a low-cost, simple, and universal system that can perform different multivalued logic computations has not yet been developed, and remains a concept for further study. Herein, taking the ternary OR and INHIBIT logic gates as model devices, we present the fabrication of a novel simple, fast, label-free, and nanoquencher-free system for multivalued DNA logic gates using poly-thymine (T) templated copper nanoparticles (CuNPs) as signal reporters. The mixture of Cu2+ and ascorbic acid (AA) is taken as a universal platform for all ternary logic gates. Different kinds of poly-T strands and delicately designed complementary poly-adenine (A) strands are alternatively applied as ternary inputs to exhibit the ternary output states (low/0, medium/1, high/2). Notably, there are no nanoquenchers in this platform as poly-A strands can function as not only inputs but also efficient inhibitors of poly-T templated CuNPs. Moreover, all DNA are unlabeled single-strand DNA that do not need sophisticated labeling procedures or sequence design. The above design greatly reduces the operating time, costs, and complexity. More importantly, the ternary logic computations can be completed within 20 min because of the fast formation of CuNPs, and all of them share the same threshold values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Silva, P. A.; Gunaratne, N. H. Q.; McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 1993, 364, 42–44.

    Article  Google Scholar 

  2. Adleman, L. Molecular computation of solutions to combinatorial problems. Science 1994, 266, 1021–1024.

    Article  Google Scholar 

  3. Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Enzyme-free nucleic acid logic circuits. Science 2006, 314, 1585–1588.

    Article  Google Scholar 

  4. Mailloux, S.; Gerasimova, Y. V.; Guz, N.; Kolpashchikov, D. M.; Katz, E. Bridging the two worlds: A universal interface between enzymatic and DNA computing systems. Angew. Chem., Int. Ed. 2015, 54, 6562–6566.

    Article  Google Scholar 

  5. Janssen, B. M. G.; van Rosmalen, M.; van Beek, L.; Merkx, M. Antibody activation using DNA-based logic gates. Angew. Chem., Int. Ed. 2015, 54, 2530–2533.

    Article  Google Scholar 

  6. Prokup, A.; Deiters, A. Interfacing synthetic DNA logic operations with protein outputs. Angew. Chem., Int. Ed. 2014, 53, 13192–13195.

    Article  Google Scholar 

  7. Jiang, X. J.; Ng, D. K. P. Sequential logic operations with a molecular keypad lock with four inputs and dual fluorescence outputs. Angew. Chem., Int. Ed. 2014, 53, 10481–10484.

    Article  Google Scholar 

  8. You, M. X.; Zhu, G. Z.; Chen, T.; Donovan, M. J.; Tan, W. H. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc. 2015, 137, 667–674.

    Article  Google Scholar 

  9. Orbach, R.; Wang, F.; Lioubashevski, O.; Levine, R. D.; Remacle, F.; Willner, I. A full-adder based on reconfigurable DNA-hairpin inputs and DNAzyme computing modules. Chem. Sci. 2014, 5, 3381–3387.

    Article  Google Scholar 

  10. Orbach, R.; Remacle, F.; Levine, R. D.; Willner, I. DNAzymebased 2:1 and 4:1 multiplexers and 1:2 demultiplexer. Chem. Sci. 2014, 5, 1074–1081.

    Article  Google Scholar 

  11. Fan, D. Q.; Wu, C. T.; Wang, K.; Gu, X. X.; Liu, Y. Q.; Wang, E. K. A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem. Commun. 2016, 52, 406–409.

    Article  Google Scholar 

  12. Xu, S. L.; Li, H. L.; Miao, Y. Q.; Liu, Y. Q.; Wang, E. K. Implementation of half adder and half subtractor with a simple and universal DNA-based platform. NPG Asia Mater. 2013, 5, e76.

    Article  Google Scholar 

  13. Margulies, D.; Melman, G.; Shanzer, A. A molecular full-adder and full-subtractor, an additional step toward a moleculator. J. Am. Chem. Soc. 2006, 128, 4865–4871.

    Article  Google Scholar 

  14. Fan, D. Q.; Zhu, J. B.; Liu, Y. Q.; Wang, E. K.; Dong, S. J. Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated AgNCs. Nanoscale 2016, 8, 3834–3840.

    Article  Google Scholar 

  15. Fan, D. Q.; Zhu, J. B.; Zhai, Q. F.; Wang, E. K.; Dong, S. J. Cascade DNA logic device programmed ratiometric DNA analysis and logic devices based on a fluorescent dual-signal probe of a G-quadruplex DNAzyme. Chem. Commun. 2016, 52, 3766–3769.

    Article  Google Scholar 

  16. Li, H. L.; Liu, Y. Q.; Dong, S. J.; Wang, E. K. DNA-based advanced logic circuits for nonarithmetic information processing. NPG Asia Mater. 2015, 7, e166.

    Article  Google Scholar 

  17. Kang, D.; White, R. J.; Xia, F.; Zuo, X. L.; Vallée-Bélisle, A.; Plaxco, K. W. DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors. NPG Asia Mater. 2012, 4, e1.

    Article  Google Scholar 

  18. Chen, J. H.; Zhou, S. G.; Wen, J. L. Concatenated logic circuits based on a three-way DNA junction: A keypad-lock security system with visible readout and an automatic reset function. Angew. Chem., Int. Ed. 2015, 54, 446–450.

    Google Scholar 

  19. Fan, D. Q.; Wang, K.; Zhu, J. B.; Xia, Y.; Han, Y. C.; Liu, Y. Q.; Wang, E. K. DNA-based visual majority logic gate with one-vote veto function. Chem. Sci. 2015, 6, 1973–1978.

    Article  Google Scholar 

  20. Feng, L. Y.; Lyu, Z.; Offenhäusser, A.; Mayer, D. Multi-level logic gate operation based on amplified aptasensor performance. Angew. Chem., Int. Ed. 2015, 54, 7693–7697.

    Article  Google Scholar 

  21. Fan, D. Q.; Wang, E. K.; Dong, S. J. A DNA-based parity generator/checker for error detection through data transmission with visual readout and an output-correction function. Chem. Sci. 2017, 8, 1888–1895

    Article  Google Scholar 

  22. Pu, F.; Ren, J. S.; Yang, X. J.; Qu, X. G. Multivalued logic gates based on DNA. Chem.—Eur. J. 2011, 17, 9590–9594.

    Article  Google Scholar 

  23. Ran, X.; Pu, F.; Ren, J. S.; Qu, X. G. DNA-regulated upconverting nanoparticle signal transducers for multivalued logic operation. Small 2014, 10, 1500–1503.

    Article  Google Scholar 

  24. He, K. Y.; Li, Y.; Xiang, B. B.; Zhao, P.; Hu, Y. F.; Huang, Y.; Li, W.; Nie, Z.; Yao, S. Z. A universal platform for building molecular logic circuits based on a reconfigurable three-dimensional DNA nanostructure. Chem. Sci. 2015, 6, 3556–3564.

    Article  Google Scholar 

  25. Ali, M.; Mafe, S.; Ramirez, P.; Neumann, R.; Ensinger, W. Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains. Langmuir 2009, 25, 11993–11997.

    Article  Google Scholar 

  26. Cervera, J.; Mafé, S. Multivalued and reversible logic gates implemented with metallic nanoparticles and organic ligands. ChemPhysChem 2010, 11, 1654–1658.

    Article  Google Scholar 

  27. Ferreira, R.; Remón, P.; Pischel, U. Multivalued logic with a tristable fluorescent switch. J. Phys. Chem. C 2009, 113, 5805–5811.

    Article  Google Scholar 

  28. Qing, Z. H.; He, X. X.; He, D. G.; Wang, K. M.; Xu, F. Z.; Qing, T. P.; Yang, X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 9719–9722.

    Article  Google Scholar 

  29. Mao, Z. G.; Qing, Z. H.; Qing, T. P.; Xu, F. Z.; Wen, L.; He, X. X.; He, D. G.; Shi, H.; Wang, K. M. Poly(thymine)- templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing. Anal. Chem. 2015, 87, 7454–7460.

    Article  Google Scholar 

  30. Song, Q. W.; Wang, R. H.; Sun, F. F.; Chen, H. K.; Wang, Z.; Na, N.; Ouyang, J. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens. Bioelectron. 2017, 87, 760–763.

    Article  Google Scholar 

  31. Chi, B. Z.; Liang, R. P.; Qiu, W. B.; Yuan, Y. H.; Qiu, J. D. Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosens. Bioelectron. 2017, 87, 216–221.

    Article  Google Scholar 

  32. Li, H. L.; Guo, S. J.; Liu, Q. H.; Qin, L. D.; Dong, S. J.; Liu, Y. Q.; Wang, E. K. Implementation of arithmetic functions on a simple and universal molecular beacon platform. Adv. Sci. 2015, 2, 1500054.

    Article  Google Scholar 

  33. Fan, D. Q.; Wang, E. K.; Dong, S. J. Exploiting polydopamine nanospheres to DNA computing: A simple, enzyme-free and G-quadruplex-free DNA parity generator/checker for error detection during data transmission. ACS Appl. Mater. Interfaces 2017, 9, 1322–1330.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21375123, 21427811 and 21675151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Electronic supplementary material

12274_2017_1458_MOESM1_ESM.pdf

Simple, fast, label-free, and nanoquencher-free system for operating multivalued DNA logic gates using polythymine templated CuNPs as signal reporters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, D., Wang, E. & Dong, S. Simple, fast, label-free, and nanoquencher-free system for operating multivalued DNA logic gates using polythymine templated CuNPs as signal reporters. Nano Res. 10, 2560–2569 (2017). https://doi.org/10.1007/s12274-017-1458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1458-x

Keywords

Navigation