Skip to main content
Log in

Uniform ordered mesoporous ZnCo2O4 nanospheres for super-sensitive enzyme-free H2O2 biosensing and glucose biofuel cell applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Uniform, ordered mesoporous ZnCo2O4 (meso-ZnCo2O4) nanospheres were successfully synthesized using a sacrificing template method. The meso-ZnCo2O4 nanospheres were used for the first time for H2O2 biosensing and in glucose biofuel cells (GBFCs) as an enzyme mimic. The meso-ZnCo2O4 nanospheres not only exhibited excellent catalytic performance in the H2O2 sensor, achieving a high sensitivity (658.92 μA·mM–1·cm–2) and low detection limit (0.3 nM at signal-to-noise ratio (S/N) = 3), but also performed as an excellent cathode material in GBFCs, resulting in an open circuit voltage of 0.83 V, maximum power density of 0.32 mW·cm–2, and limiting current density of 1.32 mA·cm–2. The preeminent catalytic abilities to H2O2 and glucose may be associated with the large specific surface area of the mesoporous structure in addition to the intrinsic catalytic activity of ZnCo2O4. These significant findings provide a successful basis for developing methods for the supersensitive detection of H2O2 and enriching catalytic materials for biofuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, S. J.; Guvench, S.; Guvench, M. G.; Kuller, A. E.; Chan, L. T.; Wolfson, S. K., Jr. Glucose sensing in the low and negative region: Utilization of a thin-film electrode. J. Electroanal. Chem. Interfacial Electrochem. 1991, 321, 211–222.

    Article  Google Scholar 

  2. Stahl, S. S. Palladium-catalyzed oxidation of organic chemicals with O2. Science 2005, 309, 1824–1826.

    Article  Google Scholar 

  3. Yuhashi, N.; Tomiyama, M.; Okuda, J.; Igarashi, S.; Ikebukuro, K.; Sode, K. Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens. Bioelectron. 2005, 20, 2145–2150.

    Article  Google Scholar 

  4. Gu, J.; Zhang, Y. W.; Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050–8065.

    Article  Google Scholar 

  5. Zhang, E. H.; Yu, X.; Ci, S. Q.; Jia, J. C.; Wen, Z. H. Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 2016, 81, 46–53.

    Article  Google Scholar 

  6. Ci, S. Q.; Wen, Z. H.; Mao, S.; Hou, Y.; Cui, S. M.; He, Z.; Chen, J. H. One-pot synthesis of high-performance Co/ graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals. Chem. Commun. 2015, 51, 9354–9357.

    Article  Google Scholar 

  7. Liu, M. M.; Liu, R.; Chen, W. Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 2013, 45, 206–212.

    Article  Google Scholar 

  8. Hua, M. Y.; Chen, H. C.; Tsai, R. Y.; Leu, Y. L.; Liu, Y. C.; Lai, J. T. Synthesis and characterization of carboxylated polybenzimidazole and its use as a highly sensitive and selective enzyme-free H2O2 sensor. J. Mater. Chem. 2011, 21, 7254–7262.

    Article  Google Scholar 

  9. Kuwahara, T.; Ohta, H.; Kondo, M.; Shimomura, M. Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell. Bioelectrochemistry 2008, 74, 66–72.

    Article  Google Scholar 

  10. Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

    Article  Google Scholar 

  11. Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766.

    Article  Google Scholar 

  12. Kuo, C. C.; Lan, W. J.; Chen, C. H. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: Highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 2014, 6, 334–341.

    Article  Google Scholar 

  13. Wu, M. Y.; Meng, S. J.; Wu, Q.; Si, W. L.; Huang, W.; Dong, X. C. Nickel–cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS Appl. Mater. Interfaces 2015, 7, 21089–21094.

    Article  Google Scholar 

  14. Sun, C. C.; Yang, J.; Dai, Z. Y.; Wang, X. W.; Zhang, Y. F.; Li, L. Q.; Chen, P.; Huang, W.; Dong, X. C. Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res. 2016, 9, 1300–1309.

    Article  Google Scholar 

  15. Guan, B. K.; Guo, D.; Hu, L. L.; Zhang, G. H.; Fu, T.; Ren, W. J.; Li, J. D.; Li, Q. H. Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 16116–16123.

    Article  Google Scholar 

  16. Zhao, R. Z.; Li, Q.; Wang, C. X.; Yin, L. W. Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries. Electrochim. Acta 2016, 197, 58–67.

    Article  Google Scholar 

  17. Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.

    Article  Google Scholar 

  18. Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 8916–8921.

    Article  Google Scholar 

  19. Hu, L. L.; Qu, B. H.; Li, C. C.; Chen, Y. J.; Mei, L.; Lei, D. N.; Chen, L. B.; Li, Q. H.; Wang, T. H. Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a highperformance anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5596–5602.

    Article  Google Scholar 

  20. Liu, B.; Liu, B. Y.; Wang, Q. F.; Wang, X. F.; Xiang, Q. Y.; Chen, D.; Shen, G. Z. New energy storage option: Toward ZnCo2O4 nanorods/nickel foam architectures for highperformance supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 10011–10017.

    Article  Google Scholar 

  21. Zhou, G.; Zhu, J.; Chen, Y. J.; Mei, L.; Duan, X. C.; Zhang, G. H.; Chen, L. B.; Wang, T. H.; Lu, B. G. Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim. Acta 2014, 123, 450–455.

    Article  Google Scholar 

  22. Cheng, J. B.; Lu, Y.; Qiu, K. W.; Yan, H. L.; Hou, X. Y.; Xu, J. Y.; Han, L.; Liu, X. M.; Kim, J.-K.; Luo, Y. S. Mesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 17016–17022.

    Article  Google Scholar 

  23. Park, H. J.; Kim, J.; Choi, N.-J.; Song, H.; Lee, D.-S. Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. ACS Appl. Mater. Interfaces 2016, 8, 3233–3240.

    Article  Google Scholar 

  24. Anu Prathap, M. U.; Wei, C.; Sun, S. G.; Xu, Z. J. A new insight into electrochemical detection of eugenol by hierarchical sheaf-like mesoporous NiCo2O4. Nano Res. 2015, 8, 2636–2645.

    Article  Google Scholar 

  25. Zhu, M. Y.; Meng, D. H.; Wang, C. J.; Diao, G. W. Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl. Mater. Interfaces 2013, 5, 6030–6037.

    Article  Google Scholar 

  26. Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981–988.

    Article  Google Scholar 

  27. Zhang, Z.; Liu, X. Q.; Wu, Y.; Zhao, H. Y. Graphene modified Li2FeSiO4/C composite as a high performance cathode material for lithium-ion batteries. J. Solid State Electrochem. 2015, 19, 469–475.

    Article  Google Scholar 

  28. Shen, M. J.; Zhang, Z.; Ding, Y. P. Synthesizing NiAl-layered double hydroxide microspheres with hierarchical structure and electrochemical detection of hydroquinone and catechol. Microchem. J. 2016, 124, 209–214.

    Article  Google Scholar 

  29. He, C.; Liu, X. H.; Shi, J. W.; Ma, C. Y.; Pan, H.; Li, G. L. Anionic starch-induced Cu-based composite with flake-like mesostructure for gas-phase propanal efficient removal. J. Colloid Interface Sci. 2015, 454, 216–225.

    Article  Google Scholar 

  30. Deng, W. F.; Yuan, X. Y.; Tan, Y. M.; Ma, M.; Xie, Q. J. Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules. Biosens. Bioelectron. 2016, 85, 618–624.

    Article  Google Scholar 

  31. Wang, D. S.; Zhao, P.; Li, Y. D. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts. Sci. Rep. 2011, 1, 37.

    Article  Google Scholar 

  32. Kleitz, F.; Choi, S. H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 2136–2137.

    Google Scholar 

  33. Wang, Y. Q.; Yang, C. M.; Schmidt, W.; Spliethoff, B.; Bill, E.; Schüth, F. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Adv. Mater. 2005, 17, 53–56.

    Article  Google Scholar 

  34. Xu, D.; Luo, L. Q.; Ding, Y. P.; Jiang, L.; Zhang, Y. T.; Ouyang, X. Q.; Liu, B. D. A novel nonenzymatic fructose sensor based on electrospun LaMnO3 fibers. J. Electroanal. Chem. 2014, 727, 21–26.

    Article  Google Scholar 

  35. Wu, C.; Cai, J. J.; Zhang, Q. B.; Zhou, X.; Zhu, Y.; Li, L. J.; Shen, P. K.; Zhang, K. L. Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 2015, 169, 202–209.

    Article  Google Scholar 

  36. Vijayanand, S.; Joy, P. A.; Potdar, H. S.; Patil, D.; Patil, P. Nanostructured spinel ZnCo2O4 for the detection of LPG. Sens. Actuators B: Chem. 2011, 152, 121–129.

    Article  Google Scholar 

  37. Varghese, B.; Teo, C. H.; Zhu, Y. W.; Reddy, M. V.; Chowdari, B. V. R.; Wee, A. T. S.; Tan, V. B. C.; Lim, C. T.; Sow, C. H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 2007, 17, 1932–1939.

    Article  Google Scholar 

  38. Xu, J. B.; Gao, P.; Zhao, T. S. Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anionexchange membrane fuel cells. Energy Environ. Sci. 2012, 5, 5333–5339.

    Article  Google Scholar 

  39. Bai, J.; Li, X. G.; Liu, G. Z.; Qian, Y. T.; Xiong, S. L. Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 2014, 24, 3012–3020.

    Article  Google Scholar 

  40. Tan, Y.; Wu, C. C.; Lin, H.; Li, J. B.; Chi, B.; Pu, J.; Jian, L. Insight the effect of surface Co cations on the electrocatalytic oxygen evolution properties of cobaltite spinels. Electrochim. Acta 2014, 121, 183–187.

    Article  Google Scholar 

  41. Koza, J. A.; He, Z.; Miller, A. S.; Switzer, J. A. Electrodeposition of crystalline Co3O4—A catalyst for the oxygen evolution reaction. Chem. Mater. 2012, 24, 3567–3573.

    Article  Google Scholar 

  42. Chou, N. H.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem 2011, 4, 1566–1569.

    Article  Google Scholar 

  43. Qian, L.; Gu, L.; Yang, L.; Yuan, H. Y.; Xiao, D. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 2013, 5, 7388–7396.

    Article  Google Scholar 

  44. Heli, H.; Pishahang, J. Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: Synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim. Acta 2014, 123, 518–526.

    Article  Google Scholar 

  45. Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.

    Article  Google Scholar 

  46. Lei, X. M.; Li, T. T.; Zuo, Y. P.; Yin, W. M.; Wu, L.; Shao, K.; Xiao, X. Y.; Lu, Z. C.; Han, H. Y. Platinum-based nitrogen-doped porous CxN1–x compounds used as a transducer for sensitive detection of hydrogen peroxide. Electrochim. Acta 2016, 209, 661–670.

    Article  Google Scholar 

  47. Yan, Y. B.; Li, K. X.; Dai, Y. H.; Chen, X. P.; Zhao, J.; Yang, Y. H.; Lee, J.-M. Synthesis of 3D mesoporous samarium oxide hydrangea microspheres for enzyme-free sensor of hydrogen peroxide. Electrochim. Acta 2016, 208, 231–237.

    Article  Google Scholar 

  48. Ensafi, A. A.; Rezaloo, F.; Rezaei, B. Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide. Sens. Actuators B: Chem. 2016, 231, 239–244.

    Article  Google Scholar 

  49. Tang, K. K.; Wu, X. F.; Wang, G. D.; Li, L. X.; Wu, S. Y.; Dong, X. T.; Liu, Z. L.; Zhao, B. One-step preparation of silver nanoparticle embedded amorphous carbon for nonenzymatic hydrogen peroxide sensing. Electrochem. Commun. 2016, 68, 90–94.

    Article  Google Scholar 

  50. Huang, S.; Si, Z. C.; Li, X. K.; Zou, J. S.; Yao, Y. W.; Weng, D. A novel Au/r-GO/TNTs electrode for H2O2, O2 and nitrite detection. Sens. Actuators B: Chem. 2016, 234, 264–272.

    Article  Google Scholar 

  51. Du, S. C.; Ren, Z. Y.; Wu, J.; Xi, W.; Fu, H. G. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Res. 2016, 9, 2260–2269.

    Article  Google Scholar 

  52. Ding, Y.; Wang, Y.; Su, L.; Bellagamba, M.; Zhang, H.; Lei, Y. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron. 2010, 26, 542–548.

    Article  Google Scholar 

  53. Chen, Y.; Prasad, K. P.; Wang, X. W.; Pang, H. C.; Yan, R. Y.; Than, A.; Chan-Park, M. B.; Chen, P. Enzymeless multi-sugar fuel cells with high power output based on 3D graphene-Co3O4 hybrid electrodes. Phys. Chem. Chem. Phys. 2013, 15, 9170–9176.

    Article  Google Scholar 

Download references

Acknowledgements

Thank the National Natural Science Foundation of China (Nos. 21671132 and 81301345) for the supports. Thank Analysis and Determination Center, Shanghai University for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaping Ding or Zongqian Hu.

Electronic supplementary material

12274_2017_1452_MOESM1_ESM.pdf

Uniform ordered mesoporous ZnCo2O4 nanospheres for super-sensitive enzyme-free H2O2 biosensing and glucose biofuel cell applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Li, L., Ding, Y. et al. Uniform ordered mesoporous ZnCo2O4 nanospheres for super-sensitive enzyme-free H2O2 biosensing and glucose biofuel cell applications. Nano Res. 10, 2482–2494 (2017). https://doi.org/10.1007/s12274-017-1452-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1452-3

Keywords

Navigation