Skip to main content
Log in

Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenide nanodots (NDs) have received considerable interest. We report a facile bottom-up synthetic route for MoS2 NDs by using molybdenum pentachloride and L-cysteine as precursors in oleylamine. The synthesis of NDs with a narrow size distribution ranging from 2.2 to 5.3 nm, was tailored by controlling the reaction time. Because of its coating characteristics, oleyalmine leads to uniformity and monodispersity of the NDs. Moreover, the NDs synthesized have large specific surface areas providing active sites. Graphene possesses outstanding conductivity. Combining the advantages of the two materials, the 0D/2D material exhibits superior electrochemical performance because of the 2D permeable channels for ion adsorption, energy storage, and conversion. The as-prepared MoS2/rGO (~2.2 nm) showed a stable capacity of 220 mAh·g−1 after 10,000 cycles at the current density of 20 A·g−1. Furthermore, a reversible capacity ~140 mAh·g−1 was obtained at a much higher current density of 40 A·g−1. Additionally, this composite exhibited superior catalytic performance evidenced by a small overpotential (222 mV) to afford 10 mA·cm−2, and a small Tafel slope (59.8 mV·decade−1) with good acid-stability. The facile approach may pave the way for the preparation of NDs with these nanostructures for numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X. L.; Li, Y. D. MoS2 nanostructures: Synthesis and electrochemical Mg2+ intercalation. J. Phys. Chem. B 2004, 108, 13893–13900.

    Article  Google Scholar 

  2. Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 014507.

    Article  Google Scholar 

  3. Wang, H. T.; Tsai, C.; Kong D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

    Article  Google Scholar 

  4. Hu, Z.; Liu, Q. N.; Sun, W. Y.; Li, W. J.; Tao, Z. L.; Chou, S. L.; Chen, J.; Dou, S. X. MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorg. Chem. Front. 2016, 3, 532–535.

    Article  Google Scholar 

  5. Guo, B. J.; Yu, K.; Li, H. L.; Song, H. L.; Zhang, Y. Y.; Lei, X.; Fu, H.; Tan, Y. H.; Zhu, Z. Q. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 5517–5525.

    Article  Google Scholar 

  6. Ding, J. B.; Zhou, Y.; Li, Y. G.; Guo, S. J.; Huang, X. Q. MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: A new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 2016, 28, 2074–2080.

    Article  Google Scholar 

  7. Gao, Q. S.; Giordano, C.; Antonietti, M. Biomimetic oxygen activation by MoS2/Ta3N5 nanocomposites for selective aerobic oxidation. Angew. Chem., Int. Ed. 2012, 51, 11740–11744.

    Article  Google Scholar 

  8. Savjani, N.; Lewis, E. A.; Bissett, M. A.; Brent, J. R.; Dryfe, R. A. W.; Haigh, S. J.; O’Brien, P. Synthesis of lateral size-controlled monolayer 1H-MoS2@oleylamine as supercapacitor electrodes. Chem. Mater. 2016, 28, 657–664.

    Article  Google Scholar 

  9. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

    Article  Google Scholar 

  10. Xu, G. B.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. MoS2-quantum-dot-interspersed Li4Ti5O12 nanosheets with enhanced performance for Li-and Na-ion batteries. Adv. Funct. Mater. 2016, 26, 3349–3358.

    Article  Google Scholar 

  11. Jin, H. L.; Huang, H. H.; He, Y. H.; Feng, X.; Wang, S.; Dai, L. M.; Wang, J. C. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 7588–7591.

    Article  Google Scholar 

  12. Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.

    Article  Google Scholar 

  13. Choi, M. S.; Qu, D. S.; Lee, D.; Liu, X. C.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 2014, 8, 9332–9340.

    Article  Google Scholar 

  14. Ji, S. S.; Yang, Z.; Zhang, C.; Liu, Z. Y.; Tjiu, W. W.; Phang, I. Y.; Zhang, Z.; Pan, J. S.; Liu, T. X. Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. Electrochim. Acta 2013, 109, 269–275.

    Article  Google Scholar 

  15. Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297–5303.

    Article  Google Scholar 

  16. Ren, X. P.; Pang, L. Q.; Zhang, Y. X.; Ren, X. D.; Fan, H. B.; Liu, S. Z. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 10693–10697.

    Article  Google Scholar 

  17. Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmallnanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152–2156.

    Article  Google Scholar 

  18. Fan, X. L.; Chen, X. L.; Dai, L. M. 3D graphene based materials for energy storage. Curr. Opin. Colloid Interface Sci. 2015, 20, 429–438.

    Article  Google Scholar 

  19. Kong, D. B.; He, H. Y.; Song, Q.; Wang, B.; Lv, W.; Yang, Q. H.; Zhi, L. J. Rational design of MoS2@graphene nanocables: Towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 2014, 7, 3320–3325.

    Article  Google Scholar 

  20. Choi, S. H.; Ko, Y. N.; Lee, J. K.; Kang, Y. C. 3D MoS2- graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788.

    Article  Google Scholar 

  21. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  22. Zhang, Z. Y.; Li, W. Y.; Yuen, M. F.; Ng, T.-W.; Tang, Y. B.; Lee, C.-S.; Chen, X. F.; Zhang, W. J. Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy 2015, 18, 196–204.

    Article  Google Scholar 

  23. Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

    Article  Google Scholar 

  24. Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794–12798.

    Article  Google Scholar 

  25. Kwon, S. G.; Piao, Y. Z.; Park, J.; Angappane, S.; Jo, Y.; Hwang, N. M.; Park, J. G.; Hyeon, T. Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J. Am. Chem. Soc. 2007, 129, 12571–12584.

    Article  Google Scholar 

  26. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  27. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    Article  Google Scholar 

  28. Chang, K.; Chen, W. X. Single-layer MoS2/graphene dispersed in amorphous carbon: Towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 2011, 21, 17175–17184.

    Article  Google Scholar 

  29. Peng, S. J.; Liang, Y. L.; Cheng, F. Y.; Liang, J. Sizecontrolled chalcopyrite CuInS2 nanocrystals: One-pot synthesis and optical characterization. Sci. China Chem. 2012, 55, 1236–1241.

    Article  Google Scholar 

  30. Xu, C.; Peng, S. J.; Tan, C. L.; Ang, H. X.; Tan, H. T.; Zhang, H.; Yan, Q. Y. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 2014, 2, 5597–5601.

    Article  Google Scholar 

  31. Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.

    Article  Google Scholar 

  32. Zhao, F.; Sun, H. L.; Su, G.; Gao, S. Synthesis and size-dependent magnetic properties of monodisperse- EuSnanocrystals. Small 2006, 2, 244–248.

    Article  Google Scholar 

  33. Williams, P. M.; Shakesheff, K. M.; Davies, M. C.; Jackson, D. E.; Roberts, C. J.; Tendler, S. J. B. Blind reconstruction of scanning probe image data. J. Vac. Sci. Technol. B 1996, 14, 1557–1562.

    Article  Google Scholar 

  34. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    Article  Google Scholar 

  35. Du, J.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4nanodots supported on graphene. Inorg. Chem. 2015, 54, 5467–5474.

    Article  Google Scholar 

  36. Zhang, K.; Kim, H. J.; Shi, X. J.; Lee, J. T.; Choi, J. M.; Song, M. S.; Park, J. H. Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode. Inorg. Chem. 2013, 52, 9807–9812.

    Article  Google Scholar 

  37. Wang, Z.; Chen, T.; Chen, W. X.; Chang, K.; Ma, L.; Huang, G. C.; Chen, D. Y.; Lee, J. Y. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 2013, 1, 2202–2210.

    Article  Google Scholar 

  38. Buscema, M.; Steele, G. A.; Van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

    Article  Google Scholar 

  39. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  40. Ma, C. B.; Qi, X. Y.; Chen, B.; Bao, S. Y.; Yin, Z. Y.; Wu, X. J.; Luo, Z. M.; Wei, J.; Zhang, H. L.; Zhang, H. MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 2014, 6, 5624–5629.

    Article  Google Scholar 

  41. Liu, Y. T.; Zhu, X. D.; Duan, Z. Q.; Xie, X. M. Flexible and robust MoS2-graphene hybrid paper cross-linked by a polymer ligand: A high-performance anode material for thin film lithium-ion batteries. Chem. Commun. 2013, 49, 10305–10307.

    Article  Google Scholar 

  42. Zhou, H. Q.; Wang, Y. M.; He, R.; Yu, F.; Sun, J. Y.; Wang, F.; Lan, Y. C.; Ren, Z. F.; Chen, S. One-step synthesis of self-supported porousNiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 2016, 20, 29–36.

    Article  Google Scholar 

  43. Zhu, H.; Lyu, F.; Du, M. L.; Zhang, M.; Wang, Q. F.; Yao, J. M.; Guo, B. C. Design of two-dimensional, ultrathin MoS2 nanoplates fabricated within one-dimensional carbon nanofibers with thermosensitive morphology: High-performance electrocatalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2014, 6, 22126–22137.

    Article  Google Scholar 

  44. Conway, B. E.; Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role chemisorbed H. Electrochim. Acta 2002, 47, 3571–3594.

    Article  Google Scholar 

  45. Zheng, X. L.; Xu, J. B.; Yan, K. Y.; Wang, H.; Wang, Z. L.; Yang, S. H. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 2014, 26, 2344–2353.

    Article  Google Scholar 

  46. Li, J. Y.; Hou, Y.; Gao, X. F.; Guan, D. S.; Xie, Y. Y.; Chen, J. H.; Yuan, C. A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and longcycle-life. Nano Energy 2015, 16, 10–18.

    Article  Google Scholar 

  47. Lu, Y. Y.; Zhao, Q.; Zhang, N.; Lei, K. X.; Li, F. J.; Chen, J. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv. Funct. Mater. 2016, 26, 911–918.

    Article  Google Scholar 

  48. Choi, S. H.; Kang, Y. C. Polystyrene-templated aerosol synthesis of MoS2-amorphous carbon composite with open macropores as battery electrode. ChemSusChem 2015, 8, 2260–2267.

    Article  Google Scholar 

  49. Youn, D. H.; Jo, C.; Kim, J. Y.; Lee, J.; Lee, J. S. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. J. Power Sources 2015, 295, 228–234.

    Article  Google Scholar 

  50. Liu, J.; Lu, P.-J.; Liang, S. Q.; Liu, J.; Wang, W. J.; Lei, M.; Tang, S. S.; Yang, Q. Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties. Nano Energy 2015, 12, 709–724.

    Article  Google Scholar 

  51. Wang, H.; Lan, X. Z.; Jiang, D. L.; Zhang, Y.; Zhong, H. H.; Zhang, Z. P.; Jiang, Y. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 2015, 283, 187–194.

    Article  Google Scholar 

  52. Douglas, A.; Carter, R.; Oakes, L.; Share, K.; Cohn, A. P.; Pint, C. L. Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 2015, 9, 11156–11165.

    Article  Google Scholar 

  53. Py, M. A.; Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 1983, 61, 76.

    Article  Google Scholar 

  54. Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as highperformance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.

    Article  Google Scholar 

  55. David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759–1770.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program (No. 2016YFB0901502), National Natural Science Foundation of China (Nos. 51231003, 51271094, and 21231005), Ministry of Education (Nos. B12015 and IRT13R30), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanliang Tao.

Electronic supplementary material

12274_2016_1410_MOESM1_ESM.pdf

Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Li, P., Liu, X. et al. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 10, 2210–2222 (2017). https://doi.org/10.1007/s12274-016-1410-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1410-5

Keywords

Navigation