Advertisement

Nano Research

, Volume 10, Issue 6, pp 1942–1949 | Cite as

Spontaneous twisting of a collapsed carbon nanotube

  • Hamid Reza Barzegar
  • Aiming Yan
  • Sinisa Coh
  • Eduardo Gracia-Espino
  • Claudia Ojeda-Aristizabal
  • Gabriel Dunn
  • Marvin L. Cohen
  • Steven G. Louie
  • Thomas Wågberg
  • Alex Zettl
Research Article

Abstract

We study the collapsing and subsequent spontaneous twisting of a carbon nanotube by in situ transmission electron microscopy (TEM). A custom-sized nanotube is first created in the microscope by selectively extracting shells from a parent multi-walled tube. The few-walled, large-diameter daughter nanotube is driven to collapse via mechanical stimulation, after which the ribbon-like collapsed tube spontaneously twists along its long axis. In situ diffraction experiments fully characterize the uncollapsed and collapsed tubes. The experimental observations and associated theoretical analysis indicate that the origin of the twisting is compressive strain.

Keywords

multi-walled carbon nanotube collapsed carbon nanotube in situ TEM electron diffraction twisting graphene nanoribbons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract #DE-AC02-05CH11231, within the Nanomachines Program (KC1203), which provided support for TEM characterization and the continuum model calculation; by the Office of Naval Research under contract N00014-16-1-2229 which provided support for collapsed nanoribbon synthesis; by the National Science Foundation under grant DMR- 1508412 which provided for total energy calculations, and by the Swedish Research Council (grant dnr 2015-00520) which provided support for HRB. Computational resources have been provided by the NSF through XSEDE resources at NICS.

Supplementary material

12274_2016_1380_MOESM1_ESM.pdf (4.2 mb)
Spontaneous twisting of a collapsed carbon nanotube

References

  1. [1]
    Chopra, N. G.; Benedict, L. X.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138.CrossRefGoogle Scholar
  2. [2]
    Lu, J. Q.; Wu, J.; Duan, W. H.; Liu, F.; Zhu, B. F.; Gu, B. L. Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Phys. Rev. Lett. 2003, 90, 156601.CrossRefGoogle Scholar
  3. [3]
    Giusca, C. E.; Tison, Y.; Silva, S. R. P. Evidence for metalsemiconductor transitions in twisted and collapsed doublewalled carbon nanotubes by scanning tunneling microscopy. Nano Lett. 2008, 8, 3350–3356.CrossRefGoogle Scholar
  4. [4]
    Lopez-Bezanilla, A.; Campos-Delgado, J.; Sumpter, B. G.; Baptista, D. L.; Hayashi, T.; Kim, Y. A.; Muramatsu, H.; Endo, M.; Achete, C. A.; Terrones, M. et al. Geometric and electronic structure of closed graphene edges. J. Phys. Chem. Lett. 2012, 3, 2097–2102.CrossRefGoogle Scholar
  5. [5]
    Shklyaev, O. E.; Mockensturm, E.; Crespi, V. H. Modeling electrostatically induced collapse transitions in carbon nanotubes. Phys. Rev. Lett. 2011, 106, 155501.CrossRefGoogle Scholar
  6. [6]
    Benedict, L. X.; Chopra, N. G.; Cohen, M. L.; Zettl, A.; Louie, S. G.; Crespi, V. H. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 1998, 286, 490–496.CrossRefGoogle Scholar
  7. [7]
    Gao, G. H.; Ç agin, T.; Goddard, W. A., III. Energetics, structure, mechanical and vibrational properties of singlewalled carbon nanotubes. Nanotechnology 1998, 9, 184–191.CrossRefGoogle Scholar
  8. [8]
    Elliott, J. A.; Sandler, J. K. W.; Windle, A. H.; Young, R. J.; Shaffer, M. S. P. Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 2004, 92, 095501.CrossRefGoogle Scholar
  9. [9]
    Zhang, S. L.; Khare, R.; Belytschko, T.; Hsia, K. J.; Mielke, S. L.; Schatz, G. C. Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 2006, 73, 075423.CrossRefGoogle Scholar
  10. [10]
    Liu, H. J.; Cho, K. A molecular dynamics study of round and flattened carbon nanotube structures. Appl. Phys. Lett. 2004, 85, 807–809.CrossRefGoogle Scholar
  11. [11]
    Gómez-Navarro, C.; Sáenz, J. J.; Gómez-Herrero, J. Conductance oscillations in squashed carbon nanotubes. Phys. Rev. Lett. 2006, 96, 076803.CrossRefGoogle Scholar
  12. [12]
    Yu, M. F.; Dyer, M. J.; Chen, J.; Qian, D.; Liu, W. K.; Ruoff, R. S. Locked twist in multiwalled carbon-nanotube ribbons. Phys. Rev. B 2001, 64, 241403.CrossRefGoogle Scholar
  13. [13]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  14. [14]
    Liu, B.; Yu, M. F.; Huang, Y. G. Role of lattice registry in the full collapse and twist formation of carbon nanotubes. Phys. Rev. B 2004, 70, 161402.CrossRefGoogle Scholar
  15. [15]
    Xiao, J.; Liu, B.; Huang, Y.; Zuo, J.; Hwang, K. C.; Yu, M. F. Collapse and stability of single- and multi-wall carbon nanotubes. Nanotechnology 2007, 18, 395703.CrossRefGoogle Scholar
  16. [16]
    Zhang, D.-B.; Dumitrica, T. Effective strain in helical rippled carbon nanotubes: A unifying concept for understanding electromechanical response. ACS Nano 2010, 4, 6966–6972.CrossRefGoogle Scholar
  17. [17]
    Bets, K. V.; Yakobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2009, 2, 161–166.CrossRefGoogle Scholar
  18. [18]
    Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y. W. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.CrossRefGoogle Scholar
  19. [19]
    Dontsova, E.; Dumitrica, T. Nanomechanics of twisted mono- and few-layer graphene nanoribbons. J. Phys. Chem. Lett. 2013, 4, 2010–2014.CrossRefGoogle Scholar
  20. [20]
    Liu, X. Y.; Wang, F. C.; Wu, H. A. Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons. Phys. Chem. Chem. Phys. 2015, 17, 31911–31916.CrossRefGoogle Scholar
  21. [21]
    Barzegar, H. R.; Gracia-Espino, E.; Yan, A. M.; Ojeda-Aristizabal, C.; Dunn, G.; Wagberg, T.; Zettl, A. C60/collapsed carbon nanotube hybrids: A variant of peapods. Nano Lett. 2015, 15, 829–834.CrossRefGoogle Scholar
  22. [22]
    Barzegar, H. R.; Yan, A. M.; Coh, S.; Gracia-Espino, E.; Dunn, G.; Wågberg, T.; Louie, S. G.; Cohen, M. L.; Zettl, A. Electrostatically driven nanoballoon actuator. Nano Lett. 2016, 16, 6787–6791.CrossRefGoogle Scholar
  23. [23]
    Senga, R.; Hirahara, K.; Nakayama, Y. Nanotorsional actuator using transition between flattened and tubular states in carbon nanotubes. Appl. Phys. Lett. 2012, 100, 083110.CrossRefGoogle Scholar
  24. [24]
    Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604.CrossRefGoogle Scholar
  25. [25]
    Qin, L. C. Electron diffraction from carbon nanotubes. Rep. Prog. Phys. 2006, 69, 2761–2821.CrossRefGoogle Scholar
  26. [26]
    Malik, A. S.; Grandhi, R. V. A computational method to predict strip profile in rolling mills. J. Mater. Process. Technol. 2008, 206, 263–274.CrossRefGoogle Scholar
  27. [27]
    Wang, X. D.; Yang, Q.; He, A. R. Calculation of thermal stress affecting strip flatness change during run-out table cooling in hot steel strip rolling. J. Mater. Process. Technol. 2008, 207, 130–146.CrossRefGoogle Scholar
  28. [28]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.Google Scholar
  29. [29]
    Kumar, S.; Hembram, K. P. S. S.; Waghmare, U. V. Intrinsic buckling strength of graphene: First-principles density functional theory calculations. Phys. Rev. B 2010, 82, 115411.CrossRefGoogle Scholar
  30. [30]
    Gazit, D. Theory of the spontaneous buckling of doped graphene. Phys. Rev. B 2009, 79, 113411.CrossRefGoogle Scholar
  31. [31]
    Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Eds.; Springer-Verlag: Berlin, Heidelberg, 2001, pp 287–327.CrossRefGoogle Scholar
  32. [32]
    Akatyeva, E.; Dumitrica, T. Chiral graphene nanoribbons: Objective molecular dynamics simulations and phase-transition modeling. J. Chem. Phys. 2012, 137, 234702.CrossRefGoogle Scholar
  33. [33]
    Chan, C. T.; Kamitakahara, W. A.; Ho, K. M.; Eklund, P. C. Charge-transfer effects in graphite intercalates: Ab initio calculations and neutron-diffraction experiment. Phys. Rev. Lett. 1987, 58, 1528–1531.CrossRefGoogle Scholar
  34. [34]
    Charlier, J. C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069.CrossRefGoogle Scholar
  35. [35]
    Barzegar, H. R.; Gracia-Espino, E.; Sharifi, T.; Nitze, F.; Wågberg, T. Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: Impact on electronic properties and growth selectivity. J. Phys. Chem. C 2013, 117, 25805–25816.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hamid Reza Barzegar
    • 1
    • 2
    • 3
    • 4
  • Aiming Yan
    • 1
    • 3
    • 4
  • Sinisa Coh
    • 1
    • 3
  • Eduardo Gracia-Espino
    • 2
  • Claudia Ojeda-Aristizabal
    • 1
    • 3
  • Gabriel Dunn
    • 1
    • 3
    • 4
  • Marvin L. Cohen
    • 1
    • 3
  • Steven G. Louie
    • 1
    • 3
  • Thomas Wågberg
    • 2
  • Alex Zettl
    • 1
    • 3
    • 4
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of PhysicsUmea UniversityUmeaSweden
  3. 3.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations