Skip to main content
Log in

Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The scalable preparation of multi-functional three-dimensional (3D) carbon nanotubes and graphene (CNTs-G) hybrids via a well-controlled route is urgently required and challenging. Herein, an easily operated, oxalic acid-assisted method was developed for the in situ fabrication of a 3D lasagna-like Fe-N-doped CNTs-G framework (LMFC) from a precursor designed at the molecular level. The well-organized architecture of LMFC was constructed by multi-dimensionally interconnected graphene and CNTs which derived from porous graphene sheets, to form a fundamentally robust and hierarchical porous structure, as well as favorable conductive networks. The impressive oxygen reduction reaction (ORR) performances in both alkaline and acidic conditions helped confirm the significance of this technically favorable morphological structure. This product was also the subject of research for the exploration of decisive effects on the performance of ORR catalysts with reasonable control variables. The present work further advances the construction of novel 3D carbon architectures via practical and economic routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sevilla, M.; Fuertes, A. B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 2014, 8, 5069–5078.

    Article  Google Scholar 

  2. Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014, 7, 1564–1596.

    Article  Google Scholar 

  3. Kim, S. H.; Song, W.; Jung, M. W.; Kang, M.-A.; Kim, K.; Chang, S.-J.; Lee, S. S.; Lim, J.; Hwang, J.; Myung, S. et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv. Mater. 2014, 26, 4247–4252.

    Article  Google Scholar 

  4. Wang, W.; Guo, S. R.; Penchev, M.; Ruiz, I.; Bozhilov, K. N.; Yan, D.; Ozkan, M.; Ozkan, C. S. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2013, 2, 294–303.

    Article  Google Scholar 

  5. Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem., Int. Ed. 2012, 51, 12124–12127.

    Article  Google Scholar 

  6. Chen, J. Z.; Xu, J. L.; Zhou, S.; Zhao, N.; Wong, C.-P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for highperformance supercapacitors. Nano Energy 2016, 25, 193–202.

    Article  Google Scholar 

  7. Ma, Y. W.; Sun, L. Y.; Huang, W.; Zhang, L. R.; Zhao, J.; Fan, Q. L.; Huang, W. Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 24592–24597.

    Article  Google Scholar 

  8. Chen, Z. P.; Ren, W. C.; Gao, L.; Liu, B. L.; Pei, S. F.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  9. Engels, S.; Weber, P.; Terrés, B.; Dauber, J.; Meyer, C.; Volk, C.; Trellenkamp, S.; Wichmann, U.; Stampfer, C. Fabrication of coupled graphene–nanotube quantum devices. Nanotechnology 2013, 24, 035204.

    Article  Google Scholar 

  10. Ding, Y.-L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube–graphene hybrid architectures for lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112–1119.

    Article  Google Scholar 

  11. Du, F.; Yu, D. S.; Dai, L. M.; Ganguli, S.; Varshney, V.; Roy, A. K. Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance. Chem. Mater. 2011, 23, 4810–4816.

    Article  Google Scholar 

  12. Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556.

    Article  Google Scholar 

  13. Sun, Y. M.; Fang, Z.; Wang, C. X.; Zhou, A. J.; Duan, H. W. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid–carbon nanotube–graphene paper: Towards freestanding flexible electrodes with improved supercapacitive performance. Nanotechnology 2015, 26, 374002.

    Article  Google Scholar 

  14. Deng, Y. H.; Liu, C.; Yu, T.; Liu, F.; Zhang, F. Q.; Wan, Y.; Zhang, L. J.; Wang, C. C.; Tu, B.; Webley, P. A. et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem. Mater. 2007, 19, 3271–3277.

    Article  Google Scholar 

  15. Feng, D.; Lv, Y. Y.; Wu, Z. X.; Dou, Y. Q.; Han, L.; Sun, Z. K.; Xia, Y. Y.; Zheng, G. F.; Zhao, D. Y. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 2011, 133, 15148–15156.

    Article  Google Scholar 

  16. Liang, H.-W.; Wei, W.; Wu, Z.-S.; Feng, X. L.; Mü llen, K. Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

    Article  Google Scholar 

  17. Kong, A. G.; Zhu, X. F.; Han, Z.; Yu, Y. Y.; Zhang, Y. B.; Dong, B.; Shan, Y. K. Ordered hierarchically micro- and mesoporous Fe–Nx-embedded graphitic architectures as efficient electrocatalysts for oxygen reduction reaction. ACS Catal. 2014, 4, 1793–1800.

    Article  Google Scholar 

  18. Liu, X. B.; Amiinu, I. S.; Liu, S. J.; Cheng, K.; Mu, S. C. Transition metal/nitrogen dual-doped mesoporous graphenelike carbon nanosheets for the oxygen reduction and evolution reactions. Nanoscale 2016, 8, 13311–13320.

    Article  Google Scholar 

  19. Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723–3728.

    Article  Google Scholar 

  20. Peng, H.-J.; Huang, J.-Q.; Zhao, M.-Q.; Zhang, Q.; Cheng, X.-B.; Liu, X.-Y.; Qian, W.-Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithiumsulfur batteries. Adv. Funct. Mater. 2014, 24, 2772–2781.

    Article  Google Scholar 

  21. Ferrero, G. A.; Preuss, K.; Marinovic, A.; Jorge, A. B.; Mansor, N.; Brett, D. J. L.; Fuertes, A. B.; Sevilla, M.; Titirici, M.-M. Fe–N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano 2016, 10, 5922–5932.

    Article  Google Scholar 

  22. Sun, L.; Kong, W. B.; Jiang, Y.; Wu, H. C.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Super-aligned carbon nanotube/ graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. J. Mater. Chem. A 2015, 3, 5305–5312.

    Article  Google Scholar 

  23. He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Wang, Z. G.; Zhang, W. L. Three-dimensional CNT/graphene-sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 18605–18610.

    Article  Google Scholar 

  24. Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled threedimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

    Article  Google Scholar 

  25. Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

    Article  Google Scholar 

  26. Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H.-L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li–O2 batteries. Adv. Mater. 2014, 26, 1378–1386.

    Article  Google Scholar 

  27. Wu, Z.-Y.; Liang, H.-W.; Chen, L.-F.; Hu, B.-C.; Yu, S.-H. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 2016, 49, 96–105.

    Article  Google Scholar 

  28. Lv, R. T.; Cruz-Silva, E.; Terrones, M. Building complex hybrid carbon architectures by covalent interconnections: Graphene–nanotube hybrids and more. ACS Nano 2014, 8, 4061–4069.

    Article  Google Scholar 

  29. Kim, N. D.; Li, Y. L.; Wang, G.; Fan, X. J.; Jiang, J. L.; Li, L.; Ji, Y.; Ruan, G. D.; Hauge, R. H.; Tour, J. M. Growth and transfer of seamless 3D graphene–nanotube hybrids. Nano Lett. 2016, 16, 1287–1292.

    Article  Google Scholar 

  30. Yan, Z.; Ma, L. L.; Zhu, Y.; Lahiri, I.; Hahm, M. G.; Liu, Z.; Yang, S. B.; Xiang, C. S.; Lu, W.; Peng, Z. W. et al. Three-dimensional metal–graphene–nanotube multifunctional hybrid materials. ACS Nano 2013, 7, 58–64.

    Article  Google Scholar 

  31. Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78.

  32. Zhu, Y.; Li, L.; Zhang, C. G.; Casillas, G.; Sun, Z. Z.; Yan, Z.; Ruan, G. D.; Peng, Z. W.; Raji, A.-R. O.; Kittrell, C. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225.

    Article  Google Scholar 

  33. Chen, R. J.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J. Z.; Tan, G. Q.; Ye, Y. S.; Amine, K. Graphene-based threedimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 2013, 13, 4642–4649.

    Article  Google Scholar 

  34. Kim, H.-J.; Randriamahazaka, H.; Oh, I.-K. Highly conductive, capacitive, flexible and soft electrodes based on a 3D graphene–nanotube–palladium hybrid and conducting polymer. Small 2014, 10, 5023–5029.

    Google Scholar 

  35. Novaes, F. D.; Rurali, R.; Ordejón, P. Electronic transport between graphene layers covalently connected by carbon nanotubes. ACS Nano 2010, 4, 7596–7602.

    Article  Google Scholar 

  36. Su, D. F.; Wang, J.; Jin, H. Y.; Gong, Y. D.; Li, M. M.; Pang, Z. F.; Wang, Y. From “waste to gold”: A one-pot method to synthesize ultrafinely dispersed Fe2O3-based nanoparticles on N-doped carbon for synergistic and efficient water splitting. J. Mater. Chem. A 2015, 3, 11756–11761.

    Article  Google Scholar 

  37. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  Google Scholar 

  38. Wang, J.; Wei, Z. Z.; Gong, Y. T.; Wang, S. P.; Su, D. F.; Han, C. L.; Li, H. R.; Wang, Y. Ni-promoted synthesis of graphitic carbon nanotubes from in situ produced graphitic carbon for dehydrogenation of ethylbenzene. Chem. Commun. 2015, 51, 12859–12862.

    Article  Google Scholar 

  39. Liu, J.; Sun, X. J.; Song, P.; Zhang, Y. W.; Xing, W.; Xu, W. L. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron. Adv. Mater. 2013, 25, 6879–6883.

    Article  Google Scholar 

  40. Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439.

    Article  Google Scholar 

  41. Li, Z. L.; Li, G. L.; Jiang, L. H.; Li, J. L.; Sun, G. Q.; Xia, C. G.; Li, F. W. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2015, 54, 1494–1498.

    Article  Google Scholar 

  42. Zhao, D.; Shui, J.-L.; Grabstanowicz, L. R.; Chen, C.; Commet, S. M.; Xu, T.; Lu, J.; Liu, D.-J. Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. Adv. Mater. 2014, 26, 1093–1097.

    Article  Google Scholar 

  43. Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

    Article  Google Scholar 

  44. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  Google Scholar 

  45. Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D.-W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 10673–10677.

    Article  Google Scholar 

  46. Goellner, V.; Baldizzone, C.; Schuppert, A.; Sougrati, M. T.; Mayrhofer, K.; Jaouen, F. Degradation of Fe/N/C catalysts upon high polarization in acid medium. Phys. Chem. Chem. Phys. 2014, 16, 18454–18462.

    Article  Google Scholar 

  47. Andres, H.; Bominaar, E. L.; Smith, J. M.; Eckert, N. A.; Holland, P. L.; Münck, E. Planar three-coordinate high-spin FeII complexes with large orbital angular momentum: Mössbauer, electron paramagnetic resonance, and electronic structure studies. J. Am. Chem. Soc. 2002, 124, 3012–3025.

    Article  Google Scholar 

  48. Shui, J. L.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D.-J. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. USA 2015, 112, 10629–10634.

    Article  Google Scholar 

  49. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (Nos. 21622308, 91534114, and 21376208), the the China Ministry of Science and Technology (No. 2016YFA0202900), the Fundamental Research Funds for the Central Universities (No. 2016FZA3006), and the Partner Group Program of the Zhejiang University and the Max-Planck Society are appreciated greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1374_MOESM1_ESM.pdf

Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Gong, Y., Deng, J. et al. Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Res. 10, 1258–1267 (2017). https://doi.org/10.1007/s12274-016-1374-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1374-5

Keywords

Navigation