Skip to main content
Log in

Specific distribution of orientated C70-fullerene triggered by solvent-tuned macrocycle adlayer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The precise localization of organic molecules in controllable positions is an important step towards constructing functional nanostructures via the bottom-up strategy. Herein, supramolecularly organized C70-fullerene assemblies on macrocycle-modified surfaces were investigated using scanning tunneling microscopy (STM) in combination with theoretical calculations. The results revealed that an up-assembly of C70-fullerene adlayers was successfully formed on top of the bottom macrocycle arrays. Density functional theory (DFT) calculations confirmed that the macrocycle networks along with the co-adsorbed solvent 1-phenyloctane served as a selective template for trapping C70-fullerene molecules in the spectral sites and acted as a support for the C70-fullerene molecules. The periodical distribution of the C70-fullerene molecules should facilitate understanding of the strong dependence of the arrangement of C70-fullerene upon the specific interactions (apart from spatial recognition) derived from modification of the sub-monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holliday, B. J.; Mirkin, C. A. Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem., Int. Ed. 2001, 40, 2022–2043.

    Article  Google Scholar 

  2. Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178.

    Article  Google Scholar 

  3. Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc. Chem. Res. 2005, 38, 386–395.

    Article  Google Scholar 

  4. Ariga, K.; Hill, J. P.; Ji, Q. M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340.

    Article  Google Scholar 

  5. Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale threedimensional shapes. Nature 2009, 459, 414–418.

    Article  Google Scholar 

  6. Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q. M.; Yonamine, Y.; Wu, K. C. W.; Hill, J. P. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chem. Lett. 2014, 43, 36–68.

    Article  Google Scholar 

  7. Thilgen, C.; Diederich, F. Structural aspects of fullerene chemistry—A journey through fullerene chirality. Chem. Rev. 2006, 106, 5049–5135.

    Article  Google Scholar 

  8. Vives, G.; Tour, J. M. Synthesis of single-molecule nanocars. Acc. Chem. Res. 2009, 42, 473–487.

    Article  Google Scholar 

  9. Martin, C. A.; Ding, D. P.; Sørensen, J. K.; Bjørnholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. Fullerenebased anchoring groups for molecular electronics. J. Am. Chem. Soc. 2008, 130, 13198–13199.

    Article  Google Scholar 

  10. Matsuo, Y.; Kanaizuka, K.; Matsuo, K.; Zhong, Y. W.; Nakae, T.; Nakamura, E. Photocurrent-generating properties of organometallic fullerene molecules on an electrode. J. Am. Chem. Soc. 2008, 130, 5016–5017.

    Article  Google Scholar 

  11. Liu, X.; Zhan, Y.; Braun, S.; Li, F.; Fahlman, M. Interfacial electronic properties of pentacene tuned by a molecular monolayer of C60. Phys. Rev. B 2009, 80, 115401.

    Article  Google Scholar 

  12. Guldi, D. M.; Illescas, B. M.; Atienza, C. M.; Wielopolski, M.; Martín, N. Fullerene for organic electronics. Chem. Soc. Rev. 2009, 38, 1587–1597.

    Article  Google Scholar 

  13. Hornbaker, D. J.; Kahng, S. J.; Misra, S.; Smith, B. W.; Johnson, A. T.; Mele, E. J.; Luzzi, D. E.; Yazdani, A. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 2002, 295, 828–831.

    Article  Google Scholar 

  14. Yoshimoto, S. Molecular assemblies of functional molecules on gold electrode surfaces studied by electrochemical scanning tunneling microscopy: Relationship between function and adlayer structures. Bull. Chem. Soc. Jpn. 2006, 79, 1167–1190.

    Article  Google Scholar 

  15. Diederich, F.; Gómez-López, M. Supramolecular fullerene chemistry. Chem. Soc. Rev. 1999, 28, 263–277.

    Article  Google Scholar 

  16. Guldi, D. M.; Zerbetto, F.; Georgakilas, V.; Prato, M. Ordering fullerene materials at nanometer dimensions. Acc. Chem. Res. 2005, 38, 38–43.

    Article  Google Scholar 

  17. Bonifazi, D.; Enger, O.; Diederich, F. Supramolecular [60]fullerene chemistry on surfaces. Chem. Soc. Rev. 2007, 36, 390–414.

    Article  Google Scholar 

  18. Babu, S. S.; Möhwald, H.; Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 2010, 39, 4021–4035.

    Article  Google Scholar 

  19. Sánchez, L.; Martín, N.; Guldi, D. M. Hydrogen-bonding motifs in fullerene chemistry. Angew. Chem., Int. Ed. 2005, 44, 5374–5382.

    Article  Google Scholar 

  20. Bonifazi, D.; Spillmann, H.; Kiebele, A.; de Wild, M.; Seiler, P.; Cheng, F. Y.; Gü ntherodt, H. J.; Jung, T.; Diederich, F. Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. Angew. Chem., Int. Ed. 2004, 43, 4759–4763.

    Article  Google Scholar 

  21. Pan, G. B.; Liu, J. M.; Zhang, H. M.; Wan, L. J.; Zheng, Q. Y.; Bai, C. L. Configurations of a calix[8]arene and a C60/calix[8]arene complex on a Au(111) surface. Angew. Chem., Int. Ed. 2003, 42, 2747–2751.

    Article  Google Scholar 

  22. Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.

    Article  Google Scholar 

  23. Yoshimoto, S.; Tsutsumi, E.; Fujii, O.; Narita, R.; Itaya, K. Effect of underlying coronene and perylene adlayers for [60]fullerene molecular assembly. Chem. Commun. 2005, 1188–1190.

    Google Scholar 

  24. Kiebele, A.; Bonifazi, D.; Cheng, F. Y.; Stö hr, M.; Diederich, F.; Jung, T.; Spillmann, H. Adsorption and dynamics of long-range interacting fullerenes in a flexible, twodimensional, nanoporous porphyrin network. ChemPhysChem 2006, 7, 1462–1470.

    Article  Google Scholar 

  25. Yoshimoto, S.; Honda, Y.; Ito, O.; Itaya, K. Supramolecular pattern of fullerene on 2D bimolecular “chessboard” consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J. Am. Chem. Soc. 2008, 130, 1085–1092.

    Article  Google Scholar 

  26. MacLeod, J. M.; Ivasenko, O.; Fu, C. Y.; Taerum, T.; Rosei, F.; Perepichka, D. F. Supramolecular ordering in oligothiophene-fullerene monolayers. J. Am. Chem. Soc. 2009, 131, 16844–16850.

    Article  Google Scholar 

  27. Di Marino, M.; Sedona, F.; Sambi, M.; Carofiglio, T.; Lubian, E.; Casarin, M.; Tondello, E. STM investigation of temperature-dependent two-dimensional supramolecular architectures of C60 and amino-tetraphenylporphyrin on Ag(110). Langmuir 2010, 26, 2466–2472.

    Article  Google Scholar 

  28. Li, M.; Zeng, Q. D.; Wang, C. Self-assembled supramolecular networks at interfaces: Molecular immobilization and recognition using nanoporous templates. Sci. China Phys. Mech. Astron. 2011, 54, 1739–1748.

    Article  Google Scholar 

  29. Räisänen, M. T.; Slater, A. G.; Champness, N. R.; Buck, M. Effects of pore modification on the templating of guest molecules in a 2D honeycomb network. Chem. Sci. 2012, 3, 84–92.

    Article  Google Scholar 

  30. Wang, J.; Tang, J. M.; Larson, A. M.; Miller, G. P.; Pohl, K. Sharp organic interface of molecular C60 chains and a pentacene derivative SAM on Au(788): A combined STM & DFT study. Surf. Sci. 2013, 618, 78–82.

    Article  Google Scholar 

  31. Pan, G. B.; Cheng, X. H.; Höger, S.; Freyland, W. 2D supramolecular structures of a shape-persistent macrocycle and co-deposition with fullerene on HOPG. J. Am. Chem. Soc. 2006, 128, 4218–4219.

    Article  Google Scholar 

  32. Cui, K.; Schlütter, F.; Ivasenko, O.; Kivala, M.; Schwab, M. G.; Lee, S.-L.; Mertens, S. F. L.; Tahara, K.; Tobe, Y.; Muellen, K. et al. Multicomponent self-assembly with a shape-persistent N-heterotriangulene macrocycle on Au(111). Chem.—Eur. J. 2015, 21, 1652–1659.

    Article  Google Scholar 

  33. Mena-Osteritz, E.; Bäuerle, P. Complexation of C60 on a cyclothiophene monolayer template. Adv. Mater. 2006, 18, 447–451.

    Article  Google Scholar 

  34. Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew. Chem., Int. Ed. 2008, 47, 6717–6721.

    Article  Google Scholar 

  35. Xu, J.; Zeng, Q. D. Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM. Chin. Chem. Lett. 2013, 24, 177–182.

    Article  Google Scholar 

  36. Geng, Y. F.; Liu, M. Q.; Xue, J. D.; Xu, P.; Wang, Y. F.; Shu, L. J.; Zeng, Q. D.; Wang, C. A template-confined fabrication of controllable gold nanoparticles based on the two-dimensional nanostructure of macrocycles. Chem. Commun. 2015, 51, 6820–6823.

    Article  Google Scholar 

  37. Chen, Y. M.; Nie, H.; Deng, K.; Wu, S. L.; Xue, J. D.; Shu, L. J.; Yu, Y.; Geng, Y. F.; Li, P.; Yang, Y. L. et al. Peptide recognition by functional supramolecular nanopores with complementary size and binding sites. Nano Res. 2016, 9, 1452–1459.

    Article  Google Scholar 

  38. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

    Article  Google Scholar 

  39. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

    Article  Google Scholar 

  40. Katsonis, N.; Marchenko, A.; Fichou, D. Adsorption and self-assembly of C70 molecules at the Au(111)/n-tetradecane interface: A scanning tunneling microscopy study. Adv. Mater. 2004, 16, 309–312.

    Article  Google Scholar 

  41. Ramachandram, B.; Saroja, G.; Sankaran, N. B.; Samanta, A. Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts. J. Phys. Chem. B 2000, 104, 11824–11832.

    Article  Google Scholar 

  42. Wang, M. X.; Zhang, X. H.; Zheng, Q. Y. Synthesis, structure, and [60]fullerene complexation properties of azacalix[m]arene[n]pyridines. Angew. Chem., Int. Ed. 2004, 43, 838–842.

    Article  Google Scholar 

  43. Nakayama, M.; Kautz, N. A.; Wang, T.; Sibener, S. J. Formation of rectangular packing and one-dimensional lines of C60 on 11-phenoxyundecanethiol self-assembled monolayers on Au(111). Langmuir 2012, 28, 4694–4701.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2016YFA0200700, 2013CB934200, and 2012CB933001) and the National Natural Science Foundation of China (No. 21472029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijin Shu, Ke Deng, Jingli Xie or Qingdao Zeng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Li, P., Xue, J. et al. Specific distribution of orientated C70-fullerene triggered by solvent-tuned macrocycle adlayer. Nano Res. 10, 991–1000 (2017). https://doi.org/10.1007/s12274-016-1358-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1358-5

Keywords

Navigation