Skip to main content
Log in

Detection of chemicals in water using a three-dimensional graphene porous structure as liquid-vapor separation filter

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we report the utilization of a three-dimensional (3D) porous graphene structure as liquid–vapor separation filter, which allows the passage of chemical vapors while blocking liquid chemicals and water. The blockage of liquid chemicals and water from semiconducting sensing regions is required to avoid abnormal transistor characteristics. In order to impart omniphobic characteristics, a (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane (HDF-S) self-assembled monolayer was coated on the surface of the 3D porous graphene structure. The concentration of chemical agents in water could be consistently detected by observing the shift in the threshold voltage in the oxide nanowire transistor covered by the HDF-S self-assembled 3D graphene structure. The proposed monitoring method is expected to offer means for application in different environments by providing a stable sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arshak, K.; Moore, E.; Lyons, G. M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198.

    Article  Google Scholar 

  2. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    Article  Google Scholar 

  3. McAlpine, M. C.; Ahmad, H.; Wang, D. W.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379–384.

    Article  Google Scholar 

  4. Pinna, N.; Neri, G.; Antonietti, M.; Niederberger, M. Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. Angew. Chem. 2004, 116, 4445–4449.

    Article  Google Scholar 

  5. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  Google Scholar 

  6. Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137–3140.

    Article  Google Scholar 

  7. Qi, P. F.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H. J.; Peng, S.; Cho, K. J. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 2003, 3, 347–351.

    Article  Google Scholar 

  8. Choi, J. K.; Hwang, I. S.; Kim, S. J.; Park, J. S.; Park, S. S.; Jeong, U.; Kang, Y. C.; Lee, J.-H. Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B: Chem. 2010, 150, 191–199.

    Article  Google Scholar 

  9. Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Organic electroluminescent devices. Science 1996, 273, 884–888.

    Article  Google Scholar 

  10. de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 1997, 87, 53–59.

    Article  Google Scholar 

  11. Hong, W. K.; Jo, G.; Kwon, S. S.; Song, S.; Lee, T. Electrical properties of surface-tailored ZnO nanowire fieldeffect transistors. IEEE Trans. Electron Devices 2008, 55, 3020–3029.

    Article  Google Scholar 

  12. Wang, S. H.; Li, M.; Lu, Q. H. Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interfaces 2010, 2, 677–683.

    Article  Google Scholar 

  13. Ge, B.; Zhu, X. T.; Li, Y.; Men, X. H.; Li, P. L.; Zhang, Z. Z. The efficient separation of surfactant-stabilized water-in-oil emulsions with a superhydrophobic filter paper. Appl. Phys. A 2015, 121, 1291–1297.

    Article  Google Scholar 

  14. Bong, J.; Lim, T.; Seo, K.; Kwon, C.-A.; Park, J. H.; Kwak, S. K.; Ju, S. Dynamic graphene filters for selective gas-wateroil separation. Sci. Rep. 2015, 5, 14321.

    Article  Google Scholar 

  15. Paven, M.; Papadopoulos, P.; Schö ttler, S.; Deng, X.; Mailä nder, V.; Vollmer, D.; Butt, H.-J. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines. Nat. Commun. 2013, 4, 2512.

    Article  Google Scholar 

  16. Dong, X.-C.; Xu, H.; Wang, X.-W.; Huang, Y.-X.; Chan-Park, M. B.; Zhang, H.; Wang, L.-H.; Huang, W.; Chen, P. 3D Graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.

    Article  Google Scholar 

  17. Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168.

    Article  Google Scholar 

  18. Dong, X. C.; Wang, X. W.; Wang, L. H.; Song, H.; Zhang, H.; Huang, W.; Chen, P. 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl. Mater. Interfaces 2012, 4, 3129–3133.

    Article  Google Scholar 

  19. Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 18200–18205.

    Article  Google Scholar 

  20. Nakajima, A.; Hashimoto, K.; Watanabe, T. Recent studies on super-hydrophobic films. Monatsh. Chem. 2001, 132, 31–41.

    Article  Google Scholar 

  21. Van, T. N.; Lee, Y. K.; Lee, J.; Park, J. Y. Tuning hydrophobicity of TiO2 layers with silanization and selfassembled nanopatterning. Langmuir 2013, 29, 3054–3060.

    Article  Google Scholar 

  22. Paven, M.; Papadopoulos, P.; Schö ttler, S.; Deng, X.; Mailä nder, V.; Vollmer, D.; Butt, H.-J. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines. Nat. Commun. 2013, 4, 2512.

    Article  Google Scholar 

  23. Kota, A. K.; Kwon, G.; Tuteja, A. The design and applications of superomniphobic surfaces. NPG Asia Mater. 2014, 6, e109.

    Article  Google Scholar 

  24. Liu, T.; Kim, C.-J. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100.

    Article  Google Scholar 

  25. Yuan, Y. H.; Lee, T. R. Contact angle and wetting properties. In Surface Science Techniques; Bracco, G.; Holst, B., Eds.; Springer: Berlin, Heidelberg, Germany, 2013; pp 3–34.

    Chapter  Google Scholar 

  26. Park, J.; Lee, W. H.; Huh, S.; Sim, S. H.; Kim, S. B.; Cho, K.; Hong, B. H.; Kim, K. S. Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors. J. Phys. Chem. Lett. 2011, 2, 841–845.

    Article  Google Scholar 

  27. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  28. Li, Y.; Xu, C.-Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795–7804.

    Article  Google Scholar 

  29. Lau, K. K. S.; Caulfield, J. A.; Gleason, K. K. Structure and morphology of fluorocarbon films grown by hot filament chemical vapor deposition. Chem. Mater. 2000, 12, 3032–3037.

    Article  Google Scholar 

  30. Inayoshi, M.; Hori, M.; Goto, T.; Hiramatsu, M.; Nawata, M.; Hattori, S. Formation of polytetrafluoroethylene thin films by using CO2 laser evaporation and XeCl laser ablation. J. Vac. Sci. Technol. A 1996, 14, 1981.

    Article  Google Scholar 

  31. Butoi, C. I.; Mackie, N. M.; Gamble, L. J.; Castner, D. G.; Barnd, J.; Miller, A. M.; Fisher, E. R. Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas. Chem. Mater. 2000, 12, 2014–2024.

    Article  Google Scholar 

  32. Poskrebyshev, G. A.; Neta, P.; Huie, R. E. Equilibrium constant of the reaction ·OH + HNO3 H2O + NO3. in aqueous solution. J. Geophys. Res. 2001, 106, 4995–5004.

    Article  Google Scholar 

  33. Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B: Chem. 2011, 160, 580–591.

    Article  Google Scholar 

  34. Jalil, A. A.; Panjang, N. F. A.; Akhbar, S.; Sundang, M.; Tajuddin, N.; Triwahyono, S. Complete electrochemical dechlorination of chlorobenzenes in the presence of naphthalene mediator. J. Hazard. Mater. 2007, 148, 1–5.

    Article  Google Scholar 

  35. Khadayate, R. S.; Sali, J. V.; Patil, P. P. Acetone vapor sensing properties of screen printed WO3 thick films. Talanta 2007, 72, 1077–1081.

    Article  Google Scholar 

  36. Patel, N. G.; Patel, P. D.; Vaishnav, V. S. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens. Actuators B: Chem. 2003, 96, 180–189.

    Article  Google Scholar 

  37. Tak, Y. J.; Du Ahn, B.; Park, S. P.; Kim, S. J.; Song, A. R.; Chung, K. B.; Kim, H. J. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments. Sci. Rep. 2016, 6, 21869.

    Article  Google Scholar 

  38. Han, J.; Lim, T.; Bong, J.; Seo, K.; Kim, S.; Ju, S. Nanowirebased ternary transistor by threshold-voltage manipulation. Appl. Phys. Lett. 2014, 104, 143509.

    Article  Google Scholar 

  39. Clarkson, J. P.; Fauchet, P. M.; Rajalingam, V.; Hirschman, K. D. Solvent detection and water monitoring with a macroporous silicon field-effect sensor. IEEE Sens. J. 2007, 7, 329–335.

    Article  Google Scholar 

  40. Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R. G.; Naito, Y.; Toko, K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors 2010, 10, 3411–3443.

    Article  Google Scholar 

  41. Basebirotto, A.; Capone, S.; D’Amico, A.; Di Natale, G.; Ferragina, V.; Ferri, G.; Francioso, L.; Grassi, M.; Ciuerrini, N.; Makovati, P. et al. A portable integrated wide-range gas sensing system with smart A/D front-end. Sens. Actuators: Chem. 2008, 130, 164–174.

    Article  Google Scholar 

  42. Sysoev, V. V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 2007, 7, 3182–3188.

    Article  Google Scholar 

  43. Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Nos. 2016M3A7B4910458, 2015R1A2A1A15053268, 2015M2B2A9028357 and 2014R1A2A1A11049450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyun Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, T., Lee, J., Lee, J. et al. Detection of chemicals in water using a three-dimensional graphene porous structure as liquid-vapor separation filter. Nano Res. 10, 971–979 (2017). https://doi.org/10.1007/s12274-016-1356-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1356-7

Keywords

Navigation