Skip to main content
Log in

Heterogeneous synergistic catalysis by Ru-RuO x nanoparticles for Se–Se bond activation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The transition from homogeneous to heterogeneous synthetic chemistry enabled by nanocatalysts necessitates investigations of the reaction mechanism and structure-activity relationships for inorganic nanoparticles and organic substrates. Herein, we report that hydrothermally synthesized ruthenium nanoparticles performed differently in the Se–Se bond activation and selenylation of heterocycles, exhibiting a volcano-shaped relationship between catalytic activity and composition. A synergistic effect was observed for Ru-RuO x nanocatalysts, with numerous characterizations and density functional theory (DFT) calculations suggesting that a PhSeSePh molecule can initially be adsorbed on the metallic Ru sites and cleaved into two PhSe* species, which subsequently migrate to RuO x sites and react with the nucleophile to achieve the selenylation of heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlögl, R.; Hamid, S. B. A. Nanocatalysis: Mature science revisited or something really new? Angew. Chem., Int. Ed. 2004, 43, 1628–1637.

    Article  Google Scholar 

  2. Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.

    Article  Google Scholar 

  3. Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solutionbased synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  Google Scholar 

  4. Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.

    Article  Google Scholar 

  5. Polshettiwar, V.; Varma, R. S. Green chemistry by nanocatalysis. Green Chem. 2010, 12, 743–754.

    Article  Google Scholar 

  6. Zahmakıran, M.; Özkar, S. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 2011, 3, 3462–3481.

    Article  Google Scholar 

  7. Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.

    Article  Google Scholar 

  8. Li, Z.-X.; Xue, W.; Guan, B.-T.; Shi, F.-B.; Shi, Z.-J.; Jiang, H.; Yan, C.-H. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: Homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. Nanoscale 2013, 5, 1213–1220.

    Article  Google Scholar 

  9. Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core–shell clusters for C–C coupling reactions. Nano Res. 2014, 7, 1280–1290.

    Article  Google Scholar 

  10. Wang, S.-B.; Zhu, W.; Ke, J.; Lin, M.; Zhang, Y.-W. Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions. ACS Catal. 2014, 4, 2298–2306.

    Article  Google Scholar 

  11. Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L.-D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C.-H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601.

    Article  Google Scholar 

  12. Wu, Y. E.; Li, Y. D. New understanding of phase segregation of bimetallic nanoalloys. Sci. China Mater. 2015, 58, 3–4.

    Article  Google Scholar 

  13. Dai, L.-X.; Zhu, W.; Lin, M.; Zhang, Z.-P.; Gun, J.; Wang, Y.-H.; Zhang, Y.-W. Self-supported composites of thin Pt–Sn crosslinked nanowires for the highly chemoselective hydrogenation of cinnamaldehyde under ambient conditions. Inorg. Chem. Front. 2015, 2, 949–956.

    Article  Google Scholar 

  14. Xiao, B.; Niu, Z. Q.; Wang, Y.-G.; Jia, W.; Shang, J.; Zhang, L.; Wang, D. S.; Fu, Y.; Zeng, J.; He, W. et al. Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides. J. Am. Chem. Soc. 2015, 137, 3791–3794.

    Article  Google Scholar 

  15. Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.

    Article  Google Scholar 

  16. Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. A.; Wang, Y.; Gao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632–2640.

    Article  Google Scholar 

  17. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    Article  Google Scholar 

  18. Zhang, Z.-P.; Wang, X.-Y.; Yuan, K.; Zhu, W.; Zhang, T.; Wang, Y.-H.; Ke, J.; Zheng, X.-Y.; Yan, C.-H.; Zhang, Y.-W. Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale 2016, 8, 15744–15752.

    Article  Google Scholar 

  19. Casini, A.; Winum, J. Y.; Montero, J. L.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase inhibitors: Inhibition of cytosolic isozymes I and II with sulfamide derivatives. Bioorg. Med. Chem. Lett. 2003, 13, 837–840.

    Article  Google Scholar 

  20. Mellah, M.; Voituriez, A.; Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 2007, 107, 5133–5209.

    Article  Google Scholar 

  21. Murphy, A. R.; Fré chet, J. M. J. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007, 107, 1066–1096.

    Article  Google Scholar 

  22. Sato, T.; Nishio, M.; Ishii, Y.; Yamazaki, H.; Hidai, M. Synthesis and reactivities of the indenyl-ruthenium cluster [(?5-C9H7)Ru(µ-SEt)]3: Indenyl effect in the trinuclear ruthenium cluster. J. Organomet. Chem. 1998, 569, 99–108.

    Article  Google Scholar 

  23. Belletti, D.; Graiff, C.; Lostao, V.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Sulfido–carbonyl ruthenium clusters derived from tertiary phosphine sulfides. Inorg. Chim. Acta 2003, 347, 137–144.

    Article  Google Scholar 

  24. Becker, E.; Mereiter, K.; Schmid, R.; Kirchner, K. Facile S-S bond activation of alkyl and aryl disulfides by [RuCp(CH3CN)3]+: Formation of dinuclear Ru(III)-Ru(III) complexes with bridging thiolate ligands. Organometallics 2004, 23, 2876–2883.

    Article  Google Scholar 

  25. Maiti, B. K.; Gö rls, H.; Klobes, O.; Imhof, W. A straightforward and generalizable synthetic methodology for the synthesis of ruthenium(II) complexes with thioether ligands from either Ru(III) or Ru(0) precursors. Dalton Trans. 2010, 39, 5713–5720.

    Article  Google Scholar 

  26. Begum, N.; Hyder, M. I.; Hassan, M. R.; Kabir, S. E.; Bennett, D. W.; Haworth, D. T.; Siddiquee, T. A.; Rokhsana, D.; Sharmin, A.; Rosenberg, E. Facile E-E and E-C bond activation of PhEEPh (E = Te, Se, S) by ruthenium carbonyl clusters: Formation of di- and triruthenium complexes bearing bridging dppm and phenylchalcogenide and capping chalcogenido ligands. Organometallics 2008, 27, 1550–1560.

    Article  Google Scholar 

  27. Nagarajaprakash, R.; Ramakrishna, B.; Mahesh, K.; Mobin, S. M.; Manimaran, B. One-pot synthesis of ruthenium metallacycles via oxidative addition of diaryldichalcogen and halogen across a Ru–Ru bond. Organometallics 2013, 32, 7292–7296.

    Article  Google Scholar 

  28. Horiuchi, S.; Murasem, T.; Fujita, M. Noncovalent trapping and stabilization of dinuclear ruthenium complexes within a coordination cage. J. Am. Chem. Soc. 2011, 133, 12445–12447.

    Article  Google Scholar 

  29. Yao, S. A.; Martin-Diaconescu, V.; Infante, I.; Lancaster, K. M.; Götz, A. W.; DeBeer, S.; Berry, J. F. Electronic structure of Ni2E2 complexes (E = S, Se, Te) and a global analysis of M2E2 compounds: A case for quantized E2n–oxidation levels with n = 2, 3, or 4. J. Am. Chem. Soc. 2015, 137, 4993–5011.

    Article  Google Scholar 

  30. Aufieco, M.; Sperger, T.; Tsang, A. S.-K.; Schoenebeck, F. Highly efficient C-SeCF3 coupling of aryl iodides enabled by an air-stable dinuclear PdI catalyst. Angew. Chem., Int. Ed. 2015, 54, 10322–10326.

    Article  Google Scholar 

  31. Yin, A. X.; Liu, W.-C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y.-W.; Yan, C.-H. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.

    Article  Google Scholar 

  32. Sang, P.; Chen, Z. K.; Zou, J. W.; Zhang, Y. H. K2CO3 promoted direct sulfenylation of indoles: A facile approach towards 3-sulfenylindoles. Green Chem. 2013, 15, 2096–2100.

    Article  Google Scholar 

  33. Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. A solvent- and metal-free synthesis of 3-chacogenyl-indoles employing DMSO/I2 as an eco-friendly catalytic oxidation system. J. Org. Chem. 2014, 79, 4125–4130.

    Article  Google Scholar 

  34. Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Heterogeneously catalyzed direct C-H thiolation of heteroarenes. Angew. Chem., Int. Ed. 2015, 54, 5772–5776.

    Article  Google Scholar 

  35. Ferreira, N. L.; Azeredo, J. B.; Fiorentin, B. L.; Braga, A. L. Synthesis of 3-selenylindoles under ecofriendly conditions. Eur. J. Org. Chem. 2015, 23, 5070–5074.

    Article  Google Scholar 

  36. Lewera, A.; Zhou, W. P.; Vericat, C.; Chung, J. H.; Haasch, R.; Wieckowski, A.; Bagus, P. S. XPS and reactivity study of bimetallic nanoparticles containing Ru and Pt supported on a gold disk. Electrochim. Acta 2006, 51, 3950–3956.

    Article  Google Scholar 

  37. Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L’Argentière, P. C.; Figoli, N. S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Appl. Surf. Sci. 2003, 210, 222–230.

    Article  Google Scholar 

  38. Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts. Angew. Chem., Int. Ed. 2014, 53, 8348–8351.

    Article  Google Scholar 

  39. Vogel, W.; Kaghazchi, P.; Jacob, T.; Alonso-Vante, N. Genesis of RuxSey nanoparticles by pyrolysis of Ru4Se2(CO)11: A combined X-ray in situ and DFT study. J. Phys. Chem. C 2007, 111, 3908–3913.

    Article  Google Scholar 

  40. Inukai, J.; Cao, D. X.; Wieckowski, A.; Chang, K.-C.; Menzel, A.; Komanicky, V.; You, H. In situ synchrotron X-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction. J. Phys. Chem. C 2007, 111, 16889–16894.

    Article  Google Scholar 

  41. Haas, S.; Zehl, G.; Dorbandt, I.; Manke, I.; Bogdanoff, P.; Fiechter, S.; Hoell, A. Direct accessing the nanostructure of carbon supported Ru-Se based catalysts by ASAXS. J. Phys. Chem. C 2010, 114, 22375–22384.

    Article  Google Scholar 

  42. Ramaswamy, N.; Allen, R. J.; Mukerjee, S. Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media. J. Phys. Chem. C 2011, 115, 12650–12664.

    Article  Google Scholar 

  43. Cánaves, M. M.; Cabra, M. I.; Bauzá, A.; Cañellas, P.; Sánchez, K.; Orvay, F.; García-Raso, A.; Fiol, J. J.; Terrón, A.; Barceló-Oliver, M. et al. Crystal structures and DFT calculations of new chlorido-dimethylsulfoxide-M(III) (M = Ir, Ru, Rh) complexes with the N-pyrazolyl pyrimidine donor ligand: Kinetic vs. thermodynamic isomers. Dalton Trans. 2014, 43, 6353–6364.

    Article  Google Scholar 

  44. Gu, J.; Guo, Y.; Jiang, Y.-Y.; Zhu, W.; Xu, Y.-S.; Zhao, Z.-Q.; Liu, J.-X.; Li, W.-X.; Jin, C.-H.; Yan, C.-H. et al. Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J. Phys. Chem. C 2015, 119, 17697–17706.

    Article  Google Scholar 

  45. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

    Article  Google Scholar 

  46. Li, L. L.; Chen, X. B.; Wu, Y. E.; Wang, D. S.; Peng, Q.; Zhou, G.; Li, Y. D. Pd-Cu2O and Ag-Cu2O hybrid concave nanomaterials for an effective synergistic catalyst. Angew. Chem., Int. Ed. 2013, 52, 11049–11053.

    Article  Google Scholar 

  47. Zhou, F.; Xin, S.; Liang, H.-W.; Song, L.-T.; Yu, S.-H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 11552–11556.

    Article  Google Scholar 

  48. Qadir, K.; Joo, S. H.; Mun, B. S.; Butcher, D. R.; Renzas, J. R.; Aksoy, F.; Liu, Z.; Somorjai, G. A.; Park, J. Y. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett. 2012, 12, 5761–5768.

    Article  Google Scholar 

  49. Lettenmeier, P.; Wang, L.; Golla-Schindler, U.; Gazdzicki, P.; Cañas, N. A.; Handl, M.; Hiesgen, R.; Hosseiny, S. S.; Gago, A. S.; Friedrich, K. A. Nanosized IrOx–Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chem., Int. Ed. 2016, 55, 742–746.

    Article  Google Scholar 

  50. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  Google Scholar 

  51. Luska, K. L.; Bordet, A.; Tricard, S.; Sinev, I.; Grü nert, W.; Chaudret, B.; Leitner, W. Enhancing the catalytic properties of ruthenium nanoparticle-SILP catalysts by dilution with Iron. ACS Catal. 2016, 6, 3719–3726.

    Article  Google Scholar 

  52. Xiao, C. X.; Goh, T.-W.; Qi, Z. Y.; Goes, S.; Brashler, K.; Perez, C.; Huang, W. Y. Conversion of Levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts. ACS Catal. 2016, 6, 593–599.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 21461162001, 21025101, 21371011, 21321001, 21229101, and 21331001), the National Basic Research Program of China (No. 2012CBA01204) for financial support, and the 7th China Postdoctoral Science Foundation Funded Project (No. 2014T70009). M. L. was also supported in part by the Postdoctoral Fellowship of Peking-Tsinghua Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingdong Sun, Yawen Zhang or Chunhua Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Kang, L., Gu, J. et al. Heterogeneous synergistic catalysis by Ru-RuO x nanoparticles for Se–Se bond activation. Nano Res. 10, 922–932 (2017). https://doi.org/10.1007/s12274-016-1350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1350-0

Keywords

Navigation