Skip to main content
Log in

Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Large-area deep-silver-nanowell arrays (d-AgNWAs) for plasmonic sensing were manufactured by combining colloidal lithography with metal deposition. In contrast to most previous studies, we shed light on the outstanding sensitivity afforded by deep metallic nanowells (up to 400 nm in depth). Using gold nanohole arrays as a mask, a silicon substrate was etched into deep silicon nanowells, which acted as a template for subsequent Ag deposition, resulting in the formation of d-AgNWAs. Various geometric parameters were separately tailored to study the changes in the optical performance and further optimize the sensing ability of the structure. After several rounds of selection, the best sensing d-AgNWA, which had a Ag thickness of 400 nm, template depth of 400 nm, hole diameter of 504 nm, and period of 1 μm, was selected. It had a sensitivity of 933 nm·RIU–1, which is substantially higher than those of most common thin metallic nanohole arrays. As a proof of concept, the as-prepared structure was employed as a substrate for an antigen-antibody recognition immunoassay, which indicates its great potential for label-free real-time biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

    Article  Google Scholar 

  2. Zhong, L. B.; Jiang, Y. Y.; Liow, C.; Meng, F. B.; Sun, Y. H.; Chandran, B. K.; Liang, Z. Q.; Jiang, L.; Li, S. Z.; Chen, X. D. Highly sensitive electro-plasmonic switches based on fivefold stellate polyhedral gold nanoparticles. Small 2015, 11, 5395–5401.

    Article  Google Scholar 

  3. Krishnan, A.; Thio, T.; Kim, T. J.; Lezec, H. J.; Ebbesen, T. W.; Wolff, P. A.; Pendry, J.; Martin-Moreno, L.; Garcia-Vidal, F. J. Evanescently coupled resonance in surface plasmon enhanced transmission. Opt. Commun. 2001, 200, 1–7.

    Article  Google Scholar 

  4. Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41, 1049–1057.

    Article  Google Scholar 

  5. Jiang, L.; Chen, X. D.; Lu, N.; Chi, L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009–3017.

    Article  Google Scholar 

  6. Jiang, L.; Sun, Y. H.; Nowak, C.; Kibrom, A.; Zou, C. J.; Ma, J.; Fuchs, H.; Li, S. Z.; Chi, L. F.; Chen, X. D. Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 2011, 5, 8288–8294.

    Article  Google Scholar 

  7. Jiang, L.; Zou, C. J.; Zhang, Z. H.; Sun, Y. H.; Jiang, Y. Y.; Leow, W.; Liedberg, B.; Li, S. Z.; Chen, X. D. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small 2014, 10, 609–616.

    Article  Google Scholar 

  8. Du, J. J.; Zhu, B. W.; Chen, X. D. Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 2013, 9, 4104–4111.

    Article  Google Scholar 

  9. Walsh, G. F.; Negro, L. D. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles. Nano Lett. 2013, 13, 786–792.

    Article  Google Scholar 

  10. Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800.

    Article  Google Scholar 

  11. Stewart, M. E.; Mack, N. H.; Malyarchuk, V.; Soares, J. A. N. T.; Lee, T. W.; Gray, S. K.; Nuzzo, R. G.; Rogers, J. A. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA 2006, 103, 17143–17148.

    Article  Google Scholar 

  12. Ye, S. S.; Zhang, X. M.; Chang, L. X.; Wang, T. Q.; Li, Z. B.; Zhang, J. H.; Yang, B. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals. Adv. Opt. Mater. 2014, 2, 779–787.

    Article  Google Scholar 

  13. Yang, S. C.; Hou, J. L.; Finn, A.; Kumar, A.; Ge, Y.; Fischer, W. J. Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing. Nanoscale 2015, 7, 5760–5766.

    Article  Google Scholar 

  14. Zheng, Y. B.; Kiraly, B.; Cheunkar, S.; Huang, T. J.; Weiss, P. S. Incident-angle-modulated molecular plasmonic switches: A case of weak exciton-plasmon coupling. Nano Lett. 2011, 11, 2061–2065.

    Article  Google Scholar 

  15. Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

    Article  Google Scholar 

  16. Weiler, M.; Quint, S. B.; Klenka, S.; Pacholski C. Bottom-up fabrication of nanohole arrays loaded with gold nanoparticles: Extraordinary plasmonic sensors. Chem. Commun. 2014, 50, 15419–15422.

    Article  Google Scholar 

  17. Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through subwavelength hole arrays. Nature 1998, 391, 667–669.

    Article  Google Scholar 

  18. Genet, C.; Ebbesen, T. W. Light in tiny holes. Nature 2007, 445, 39–46.

    Article  Google Scholar 

  19. Yue, W. S.; Wang, Z. H.; Yang, Y.; Li, J. Q.; Wu, Y.; Chen, L. Q.; Ooi, B.; Wang, X. B.; Zhang, X. X. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications. Nanoscale 2014, 6, 7917–7923.

    Article  Google Scholar 

  20. Brolo, A. G.; Gordon, R.; Leathem, B.; Kavanagh, K. L. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 2004, 20, 4813–4815.

    Article  Google Scholar 

  21. De Leebeeck, A.; Kumar, L. K. S.; de Lange, V.; Sinton, D.; Gordon, R.; Brolo, A. G. On-chip surface-based detection with nanohole arrays. Anal. Chem. 2007, 79, 4094–4100.

    Article  Google Scholar 

  22. Lesuffleur, A.; Im, H.; Lindquist, N. C.; Lim, K. S.; Oh, S. H. Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. Opt. Express 2008, 16, 219–224.

    Article  Google Scholar 

  23. Feuz, L.; Jönsson, P.; Jonsson, M. P.; Höö k, F. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 2010, 4, 2167–2177.

    Article  Google Scholar 

  24. Zhang, X. M.; Li, Z. B.; Ye, S. S.; Wu, S.; Zhang, J. H.; Cui, L. Y.; Li, A. R.; Wang, T. Q.; Li, S. Z.; Yang, B. Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission. J. Mater. Chem. 2012, 22, 8903–8910.

    Article  Google Scholar 

  25. Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. W.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969.

    Article  Google Scholar 

  26. Sannomiya, T.; Scholder, O.; Jefimovs, K.; Hafner, C.; Dahlin, A. B. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small 2011, 7, 1653–1663.

    Article  Google Scholar 

  27. Nakamoto, K.; Kurita, R.; Niwa, O.; Fujii, T.; Nishida, M. Development of a mass-producible on-chip plasmonic nanohole array biosensor. Nanoscale 2011, 3, 5067–5075.

    Article  Google Scholar 

  28. Caballero, B.; García-Martín, A.; Cuevas, J. C. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics 2016, 3, 203–208.

    Article  Google Scholar 

  29. Sharma, N.; Keshmiri, H.; Zhou, X. D.; Wong, T. I.; Petri, C.; Jonas, U.; Liedberg, B.; Dostalek, J. Tunable plasmonic nanohole arrays actuated by a thermoresponsive hydrogel cushion. J. Phys. Chem. C 2016, 120, 561–568.

    Article  Google Scholar 

  30. Xiong, K. L.; Emilsson, G.; Dahlin, A. B. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst 2016, 141, 3803–3810.

    Article  Google Scholar 

  31. Yao, J. M.; Stewart, M. E.; Maria, J.; Lee, T. W.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew. Chem., Int. Ed. 2008, 47, 5013–5017.

    Article  Google Scholar 

  32. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  Google Scholar 

  33. Gao, H. W.; Henzie, J.; Odom, T. W. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 2006, 6, 2104–2108.

    Article  Google Scholar 

  34. Delamarche, E.; Schmid, H.; Michel, B.; Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 1997, 9, 741–746.

    Article  Google Scholar 

  35. Malyarchuk, V.; Hua, F.; Mack, N. H.; Velasquez, V. T.; White, J. O.; Nuzzo, R. G.; Rogers, J. A. High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express 2005, 13, 5669–5675.

    Article  Google Scholar 

  36. Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

    Article  Google Scholar 

  37. Murray-Méthot, M. P.; Ratel, M.; Masson, J. F. Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays. J. Phys. Chem. C 2010, 114, 8268–8275.

    Article  Google Scholar 

  38. Park, T. H.; Mirin, N.; Lassiter, J. B.; Nehl, C. L.; Halas, N. J.; Nordlander, P. Optical properties of a nanosized hole in a thin metallic film. ACS Nano 2008, 2, 25–32.

    Article  Google Scholar 

  39. Degiron, A.; Lezec, H. J.; Barnes, W. L.; Ebbesen, T. W. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett. 2002, 81, 4327–4329.

    Article  Google Scholar 

  40. Thio, T.; Ghaemi, H. F.; Lezec, H. J.; Wolff, P. A.; Ebbesen, T. W. Surface-plasmon-enhanced transmission through hole arrays in Cr films. J. Opt. Soc. Am. B 1999, 16, 1743–1748.

    Article  Google Scholar 

  41. Zhang, J. H.; Chen, Z.; Wang, Z. L.; Zhang, W. Y.; Ming, N. B. Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater. Lett. 2003, 57, 4466–4470.

    Article  Google Scholar 

  42. Bukasov, R.; Shumaker-Parry, J. S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 2007, 7, 1113–1118.

    Article  Google Scholar 

  43. Hicks, E. M.; Zhang, X. Y.; Zou, S. L.; Lyandres, O.; Spears, K. G.; Schatz, G. C.; van Duyne, R. P. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J. Phys. Chem. B 2005, 109, 22351–22358.

    Article  Google Scholar 

  44. Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.

    Article  Google Scholar 

  45. Sherry, L. J.; Chang, S.-H.; Schatz, G. C.; van Duyne. R. P.; Wiley, B. J.; Xia, Y. N. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038.

    Article  Google Scholar 

  46. Nehl, C. L.; Liao, H. W.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683–688.

    Article  Google Scholar 

  47. McFarland, A. D.; van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062.

    Article  Google Scholar 

  48. Mock, J. J.; Smith, D. R.; Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003, 3, 485–491.

    Article  Google Scholar 

  49. Lisboa, P.; Valsesia, A.; Mannelli, I.; Mornet, S.; Colpo, P.; Rossi, F. Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols. Adv. Mater. 2008, 20, 2352–2358.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (973 program, No. 2012CB933800) and the National Natural Science Foundation of China (NSFC, No. 91123031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, W., Fang, L. et al. Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing. Nano Res. 10, 908–921 (2017). https://doi.org/10.1007/s12274-016-1348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1348-7

Keywords

Navigation