Skip to main content
Log in

One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A one-pot/three-step synthetic scheme was developed for phase-pure epitaxy of CdS shells on zinc-blende CdSe nanocrystals to yield shells with up to sixteen monolayers. The key parameters for the epitaxy were identified, including the core nanocrystal concentration, solvent type/composition, quality of the core nanocrystals, epitaxial growth temperature, type/concentration of ligands, and composition of the precursors. Most of these key parameters were not influential when the synthetic goal was thin-shell CdSe/CdS core/shell nanocrystals. The finalized synthetic scheme was reproducible at an almost quantitative level in terms of the crystal structure, shell thickness, and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

    Article  Google Scholar 

  2. Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

    Article  Google Scholar 

  3. Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

    Article  Google Scholar 

  4. Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.

    Article  Google Scholar 

  5. Peng, X. G. Band gap and composition engineering on a nanocrystal (BCEN) in solution. Acc. Chem. Res. 2010, 43, 1387–1395.

    Article  Google Scholar 

  6. de Mello Donegá, C. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546.

    Article  Google Scholar 

  7. Bouet, C.; Tessier, M. D.; Ithurria, S.; Mahler, B.; Nadal, B.; Dubertret, B. Flat colloidal semiconductor nanoplatelets. Chem. Mater. 2013, 25, 1262–1271.

    Article  Google Scholar 

  8. Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

    Article  Google Scholar 

  9. Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

    Article  Google Scholar 

  10. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

    Article  Google Scholar 

  11. Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

    Article  Google Scholar 

  12. Xie, R. G.; Kolb, U.; Li, J. X.; Basché, T.; Mews, A. Synthesis and characterization of highly luminescent CdSe- core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488.

    Article  Google Scholar 

  13. Nan, W. N.; Niu, Y. A.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.

    Article  Google Scholar 

  14. Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

    Article  Google Scholar 

  15. Gao, Y.; Peng, X. G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235.

    Article  Google Scholar 

  16. Chen, Y. F.; Vela, J.; Htoon, H.; Casson, J. L.; Werder, D. J.; Bussian, D. A.; Klimov, V. I.; Hollingsworth, J. A. “giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 2008, 130, 5026–5027.

    Google Scholar 

  17. Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J. P.; Dubertret, B. Towards non-blinking colloidal quantum dots. Nat. Mater. 2008, 7, 659–664.

    Article  Google Scholar 

  18. Greytak, A. B.; Allen, P. M.; Liu, W. H.; Zhao, J.; Young, E. R.; Popovic, Z.; Walker, B. J.; Nocera, D. G.; Bawendi, M. G. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci. 2012, 3, 2028–2034.

    Article  Google Scholar 

  19. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.

    Article  Google Scholar 

  20. Murayama, M.; Nakayama, T. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 1994, 49, 4710–4724.

    Article  Google Scholar 

  21. Bandic, Z. Z.; Ikonic, Z. Electronic structure of (Zn,Cd)(S,Se)- based polytype superlattices. Phys. Rev. B 1995, 51, 9806–9812.

    Article  Google Scholar 

  22. Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843–4856.

    Article  Google Scholar 

  23. Galland, C.; Brovelli, S.; Bae, W. K.; Padilha, L. A.; Meinardi, F.; Klimov, V. I. Dynamic hole blockade yields two-color quantum and classical light from dot-in-bulk nanocrystals. Nano Lett. 2013, 13, 321–328.

    Article  Google Scholar 

  24. Mahler, B.; Lequeux, N.; Dubertret, B. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J. Am. Chem. Soc. 2010, 132, 953–959.

    Article  Google Scholar 

  25. Washington, A. L.; Foley, M. E.; Cheong, S.; Quffa, L.; Breshike, C. J.; Watt, J.; Tilley, R. D.; Strouse, G. F. Ostwald’s rule of stages and its role in cdse quantum dot crystallization. J. Am. Chem. Soc. 2012, 134, 17046–17052.

    Article  Google Scholar 

  26. Gao, Y.; Peng, X. G. Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 2014, 136, 6724–6732.

    Article  Google Scholar 

  27. Qin, H. Y.; Niu, Y.; Meng, R. Y.; Lin, X.; Lai, R. C.; Fang, W.; Peng, X. G. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: Nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 2014, 136, 179–187.

    Article  Google Scholar 

  28. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  Google Scholar 

  29. Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots. J. Am. Chem. Soc. 2012, 134, 9634–9643.

    Article  Google Scholar 

  30. Jung, Y. K.; Kim, J. I.; Lee, J. K. Thermal decomposition mechanism of single-molecule precursors forming metal sulfide nanoparticles. J. Am. Chem. Soc. 2010, 132, 178–184.

    Article  Google Scholar 

  31. Pu, C. D.; Peng, X. G. To battle surface traps on CdSe/CdS core/shell nanocrystals: shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134–8142.

    Article  Google Scholar 

  32. Protière, M.; Reiss, P. Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Res. Lett. 2006, 1, 62–67.

    Article  Google Scholar 

  33. Chen, D. A.; Zhao, F.; Qi, H.; Rutherford, M.; Peng, X. G. Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem. Mater. 2010, 22, 1437–1444.

    Article  Google Scholar 

  34. Yang, Y.; Qin, H. Y.; Peng, X. G. Intramolecular entropy and size-dependent solution properties of nanocrystal–ligands complexes. Nano Lett. 2016, 16, 2127–2132.

    Article  Google Scholar 

  35. Yang, Y.; Qin, H. Y.; Jiang, M. W.; Lin, L.; Fu, T.; Dai, X. L.; Zhang, Z. X.; Niu, Y.; Cao, H. J.; Jin, Y. Z. et al. Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability. Nano Lett. 2016, 16, 2133–2138.

    Article  Google Scholar 

  36. Tan, R.; Blom, D. A.; Ma, S. G.; Greytak, A. B. Probing surface saturation conditions in alternating layer growth of CdSe/CdS core/shell quantum dots. Chem. Mater. 2013, 25, 3724–3736.

    Article  Google Scholar 

  37. Guo, Y. J.; Marchuk, K.; Sampat, S.; Abraham, R.; Fang, N.; Malko, A. V.; Vela, J. Unique challenges accompany thick-shell CdSe/nCdS (n >10) nanocrystal synthesis. J. Phys. Chem. C 2012, 116, 2791–2800.

    Article  Google Scholar 

  38. Thessing, J.; Qian, J. H.; Chen, H. Y.; Pradhan, N.; Peng, X. G. Interparticle influence on size/size distribution evolution of nanocrystals. J. Am. Chem. Soc. 2007, 129, 2736–2737.

    Article  Google Scholar 

  39. Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007, 7, 2951–2959.

    Article  Google Scholar 

  40. Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.

    Article  Google Scholar 

  41. Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

    Article  Google Scholar 

  42. Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metalcarboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

    Article  Google Scholar 

  43. Dirksen, A.; Nieuwenhuizen, P. J.; Hoogenraad, M.; Haasnoot, J. G.; Reedijk, J. New mechanism for the reaction of amines with zinc dithiocarbamates. J Appl. Polym. Sci. 2001, 79, 1074–1083.

    Article  Google Scholar 

  44. van Embden, J.; Jasieniak, J.; Mulvaney, P. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: The effects of core size and shell thickness. J. Am. Chem. Soc. 2009, 131, 14299–14309.

    Article  Google Scholar 

  45. Yang, Y. A.; Wu, H. M.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem., Int. Ed. 2005, 44, 6712–6715.

    Article  Google Scholar 

  46. Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.

    Article  Google Scholar 

  47. Brovelli, S.; Schaller, R. D.; Crooker, S. A.; García-Santamaría, F.; Chen, Y.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Klimov, V. I. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nat. Commun. 2011, 2, 280.

    Article  Google Scholar 

  48. Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 2013, 5, 602–606.

    Article  Google Scholar 

  49. Cui, J.; Beyler, A. P.; Coropceanu, I.; Cleary, L.; Avila, T. R.; Chen, Y.; Cordero, J. M.; Heathcote, S. L.; Harris, D. K.; Chen, O. et al. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton–phonon coupling and the optimization of spectral linewidths. Nano Lett. 2016, 16, 289–296.

    Article  Google Scholar 

  50. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (Nos. 21233005 and 91433204) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Pu, C., Lai, R. et al. One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Res. 10, 1149–1162 (2017). https://doi.org/10.1007/s12274-016-1287-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1287-3

Keywords

Navigation