Skip to main content
Log in

Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) are currently recognized as one of the most popular power sources available. To construct advanced LIBs exhibiting long-term endurance, great attention has been paid to enhancing their poor cycle stabilities. As the performance of LIBs is dependent on the electrode materials employed, the most promising approach to improve their life span is the design of novel electrode materials. We herein describe the rational design of a three-dimensional (3D) porous MnO/C-N nanoarchitecture as an anode material for long cycle life LIBs based on their preparation from inexpensive, renewable, and abundant rapeseed pollen (R-pollen) via a facile immersion-annealing route. Remarkably, the as-prepared MnO/C-N with its optimized 3D nanostructure exhibited a high specific capacity (756.5 mAh·g−1 at a rate of 100 mA·g−1), long life span (specific discharge capacity of 513.0 mAh·g−1, ~95.16% of the initial reversible capacity, after 400 cycles at 300 mA·g−1), and good rate capability. This material therefore represents a promising alternative candidate for the high-performance anode of next-generation LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  2. Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. N. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

    Article  Google Scholar 

  3. Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998–3010.

    Article  Google Scholar 

  4. Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

    Article  Google Scholar 

  5. Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

    Article  Google Scholar 

  6. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  7. Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  8. Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res. 2015, 8, 3535–3543.

    Article  Google Scholar 

  9. Chen, W. M.; Qie, L.; Shen, Y.; Sun, Y. M.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy 2013, 2, 412–418.

    Article  Google Scholar 

  10. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  11. Wang, H. L.; Cui, L. F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

    Article  Google Scholar 

  12. Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766.

    Article  Google Scholar 

  13. Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.

    Article  Google Scholar 

  14. Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Epitaxial growth of branched a-Fe2O3/SnO2 nanoheterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

    Article  Google Scholar 

  15. Shi, Y. F.; Guo, B. K.; Corr, S. A.; Shi, Q. H.; Hu, Y. S.; Heier, K. R.; Chen, L. Q.; Seshadri, R.; Stucky, G. D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 2009, 9, 4215–4220.

    Article  Google Scholar 

  16. Chen, Y.; Song, B. H.; Li, M.; Lu, L.; Xue, J. M. Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv. Funct. Mater. 2014, 24, 319–326.

    Article  Google Scholar 

  17. Hou, X. H.; Zhang, W. L.; Wang, X. Y.; Hu, S. J.; Li, C. M. Soft template PEG-assisted synthesis of Fe3O4@C nanocomposite as superior anode materials for lithium-ion batteries. Sci. Bull. 2015, 60, 884–891.

    Article  Google Scholar 

  18. Song, L. X.; Yang, S. J.; Wei, W.; Qu, P.; Xu, M. T.; Liu, Y. Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets as anode material for lithium ion battery. Sci. Bull. 2015, 60, 892–895.

    Article  Google Scholar 

  19. Wang, H. G.; Zhang, X. B. Designing multi-shelled metal oxides: Towards high energy-density lithium-ion batteries. Sci. China Mater. 2016, 59, 521–522.

    Article  Google Scholar 

  20. Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435–441.

    Article  Google Scholar 

  21. Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319–1326.

    Article  Google Scholar 

  22. Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584–1594.

    Article  Google Scholar 

  23. Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502–510.

    Article  Google Scholar 

  24. Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.

    Article  Google Scholar 

  25. Kim, W. S.; Hwa, Y.; Kim, H. C.; Choi, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

    Article  Google Scholar 

  26. Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X. H.; Yan, R. J.; Gan, Y. P.; Zhu, W. J.; Tu, J. P.; Zhang, W. K. et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 2013, 7, 7083–7092.

    Article  Google Scholar 

  27. Sun, B.; Chen, Z. X.; Kim, H. S.; Ahn, H. J.; Wang, G. X. MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 2011, 196, 3346–3349.

    Article  Google Scholar 

  28. Zhong, K. F.; Zhang, B.; Luo, S. H.; Wen, W.; Li, H.; Huang, X. J.; Chen, L. Q. Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 2011, 196, 6802–6808.

    Article  Google Scholar 

  29. Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.

    Article  Google Scholar 

  30. Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300–3308.

    Article  Google Scholar 

  31. Li, X. W.; Xiong, S. L.; Li, J. F.; Liang, X.; Wang, J. Z.; Bai, J.; Qian, Y. T. MnO@carbon core–shell nanowires as stable high-performance anodes for lithium-ion batteries. Chem.—Eur. J. 2013, 19, 11310–11319.

    Article  Google Scholar 

  32. Hu, H.; Cheng, H. Y.; Liu, Z. F.; Yu, Y. Facile synthesis of carbon spheres with uniformly dispersed MnO nanoparticles for lithium ion battery anode. Electrochim. Acta 2015, 152, 44–52.

    Article  Google Scholar 

  33. Liu, H.; Li, Z. H.; Liang, Y. R.; Fu, R. W.; Wu, D. C. Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes. Carbon 2015, 84, 419–425.

    Article  Google Scholar 

  34. Wang, S. B.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C. MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 12713–12718.

    Article  Google Scholar 

  35. Bergmann, A.; Zaharieva, I.; Dau, H.; Strasser, P. Electrochemical water splitting by layered and 3D crosslinked manganese oxides: Correlating structural motifs and catalytic activity. Energy Environ. Sci. 2013, 6, 2745–2755.

    Article  Google Scholar 

  36. Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B. et al. Hybrid device employing threedimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 2014, 14, 1987–1994.

    Article  Google Scholar 

  37. Yang, K.; Wu, D.; Ye, X. Q.; Liu, D. H.; Chen, J. C.; Sun, P. L. Characterization of chemical composition of bee pollen in China. J. Agric. Food Chem. 2013, 61, 708–718.

    Article  Google Scholar 

  38. Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl. Mater. Interfaces 2013, 5, 1997–2003.

    Article  Google Scholar 

  39. Zhang, K. J.; Han, P. X.; Gu, L.; Zhang, L. X.; Liu, Z. H.; Kong, Q. S.; Zhang, C. J.; Dong, S. M.; Zhang, Z. Y.; Yao, J. H. et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 658–664.

    Article  Google Scholar 

  40. Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

    Article  Google Scholar 

  41. Zhang, X.; Xing, Z.; Wang, L. L.; Zhu, Y. C.; Li, Q. W.; Liang, J. W.; Yu, Y.; Huang, T.; Tang, K. B.; Qian, Y. T. et al. Synthesis of MnO@C core–shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17864–17869.

    Article  Google Scholar 

  42. Liu, S. Y.; Xie, J.; Zheng, Y. X.; Cao, G. S.; Zhu, T. J.; Zhao, X. B. Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochim. Acta 2012, 66, 271–278.

    Article  Google Scholar 

  43. Xu, S. D.; Zhu, Y. B.; Zhuang, Q. C.; Wu, C. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries. Mater. Res. Bull. 2013, 48, 3479–3484.

    Article  Google Scholar 

  44. Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058.

    Article  Google Scholar 

  45. Chen, L. F.; Huang, Z. H.; Liang, H. W.; Yao, W. T.; Yu, Z. Y.; Yu, S. H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.

    Article  Google Scholar 

  46. Wang, H.; Hu, P. F.; Yang, J.; Gong, G. M.; Guo, L.; Chen, X. D. Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 2015, 27, 2348–2354.

    Article  Google Scholar 

  47. Xu, G. Y.; Han, J. P.; Ding, B.; Nie, P.; Pan, J.; Dou, H.; Li, H. S.; Zhang, X. G. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 2015, 17, 1668–1674.

    Article  Google Scholar 

  48. Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Sci. China Mater. 2015, 58, 944–952.

    Article  Google Scholar 

  49. Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Selfassembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107.

    Article  Google Scholar 

  50. Liu, B.; Hu, X. L.; Xu, H. H.; Luo, W.; Sun, Y. M.; Huang, Y. H. Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries. Sci. Rep. 2014, 4, 4229.

    Google Scholar 

  51. Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M. Rationalization of the low-potential reactivity of 3d-metalbased inorganic compounds toward Li. J. Electrochem. Soc. 2002, 149, A1212–A1217.

    Article  Google Scholar 

  52. Guo, J. C.; Liu, Q.; Wang, C. S.; Zachariah, M. R. Interdispersed amorphous MnOx-carbon nanocomposites with superior electrochemical performance as lithium-storage material. Adv. Funct. Mater. 2012, 22, 803–811.

    Article  Google Scholar 

  53. Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.

    Article  Google Scholar 

  54. Varzi, A.; Bresser, D.; von Zamory, J.; Müller, F.; Passerini, S. ZnFe2O4-C/LiFePO4-CNT: A novel high-power lithium-ion battery with excellent cycling performance. Adv. Energy Mater. 2014, 4, 1400054.

    Article  Google Scholar 

  55. Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504.

    Article  Google Scholar 

  56. Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 21431006 and 21503207), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), the National Basic Research Program of China (Nos. 2014CB931800, 2013CB933900), and Scientific Research Grant of Hefei Science Center of Chinese Academy of Sciences (Nos. 2015HSC-UE007 and 2015SRG-HSC038), the China Postdoctoral Science Foundation (Nos. 2015T80662 and 2014M550346), and the Fundamental Research Funds for the Central Universities (No. WK2060190047). The authors also thank the help provided by Dr. Yue Lin and Prof. Yan-Wei Ding in Instruments’ Center for Physical Science at the University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hong Yu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1283_MOESM1_ESM.pdf

Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LF., Ma, SX., Lu, S. et al. Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Res. 10, 1–11 (2017). https://doi.org/10.1007/s12274-016-1283-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1283-7

Keywords

Navigation