Skip to main content
Log in

Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hollow and porous Pt-based nanomaterials are promising catalysts with applications in many sustainable energy technologies such as fuel cells. Economical and green synthetic routes are highly desirable. Here, we report a facile approach to prepare double- and single-layered Pt-Ni nanobowls (DLNBs and SLNBs) with porous shells. Microstructural analysis revealed that the shells were constructed of alloyed Pt-Ni nanocrystals and small amounts of Ni compounds. X-ray photoelectron spectra showed that their Pt 4f binding energies shifted in the negative direction compared to those of the commercial Pt/C catalyst. Furthermore, the DLNBs contained greater contents of oxidized Ni species than the SLNBs. The layer-controlled growth processes were confirmed by microscopy, and a formation mechanism was proposed based on the assistance of citrate and poly(vinylpyrrolidone) (PVP). For the methanol oxidation reaction, the DLNBs and SLNBs exhibited 2.9 and 2.5 times higher mass activities than that of the commercial Pt/C catalyst, respectively. The activity enhancements were attributed to electronic effects and a bifunctional mechanism. Chronoamperometry and prolonged cyclic voltammetry indicated that the Pt-Ni bowl-like structures had better electrochemical properties and structural stability than the commercial Pt/C catalyst, thus making the Pt-Ni nanobowls excellent electrocatalysts for use in direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.

    Article  Google Scholar 

  2. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  Google Scholar 

  3. Wang, Y. J.; Zhao, N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

    Article  Google Scholar 

  4. Hansen, T. W.; Delariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

    Article  Google Scholar 

  5. Huang, H. J.; Wang, X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266–6291.

    Article  Google Scholar 

  6. Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450.

    Article  Google Scholar 

  7. Cao, X.; Han, Y.; Gao, C. Z.; Xu, Y.; Huang, X. M.; Willander, M.; Wang, N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy 2014, 9, 301–308.

    Article  Google Scholar 

  8. Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.

    Article  Google Scholar 

  9. Zhang, J. F.; Li, K. D.; Zhang, B. Synthesis of dendritic Pt-Ni-P alloy nanoparticles with enhanced electrocatalytic properties. Chem. Commun. 2015, 51, 12012–12015.

    Article  Google Scholar 

  10. Jung, N.; Chung, D. Y.; Ryu, J.; Yoo, S. J.; Sung, Y.-E. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 2014, 9, 433–456.

    Article  Google Scholar 

  11. Hammer, B.; Morikawa, Y.; Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.

    Article  Google Scholar 

  12. Kua, J.; Goddard, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.

    Article  Google Scholar 

  13. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  14. Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 2011, 5, 8212–8222.

    Article  Google Scholar 

  15. Song, Y. J.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Shelnutt, J. A. Synthesis of platinum nanocages by using liposomes containing photocatalyst molecules. Angew. Chem., Int. Ed. 2006, 45, 8126–8130.

    Article  Google Scholar 

  16. Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction. ACS Catal. 2015, 5, 5333–5341.

    Article  Google Scholar 

  17. Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013, 46, 1795–1805.

    Article  Google Scholar 

  18. Garcia, R. M.; Song, Y. J.; Dorin, R. M.; Wang, H. R.; Li, P.; Qiu, Y.; van Swol, F.; Shelnutt, J. A. Light-driven synthesis of hollow platinum nanospheres. Chem. Commun. 2008, 2535–2537.

    Google Scholar 

  19. Cui, C.-H.; Li, H.-H.; Yu, S.-H. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst. Chem. Sci. 2011, 2, 1611–1614.

    Article  Google Scholar 

  20. Cai, K.; Lv, Z. C.; Chen, K.; Huang, L.; Wang, J.; Shao, F.; Wang, Y. J.; Han, H. Y. Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem. Commun. 2013, 49, 6024–6026.

    Article  Google Scholar 

  21. Alia, S. M.; Zhang, G.; Kisailus, D.; Li, D. S.; Gu, S.; Jensen, K.; Yan, Y. S. Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv. Funct. Mater. 2010, 20, 3742–3746.

    Article  Google Scholar 

  22. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  Google Scholar 

  23. Nosheen, F.; Zhang, Z. C.; Zhuang, J.; Wang, X. One-pot fabrication of single-crystalline octahedral Pt-Cu nanoframes and their enhanced electrocatalytic activity. Nanoscale 2013, 5, 3660–3663.

    Article  Google Scholar 

  24. Zhang, Z. C.; Yang, Y.; Nosheen, F.; Wang, P. P.; Zhang, J. C.; Zhuang, J.; Wang, X. Fine tuning of the structure of Pt-Cu alloy nanocrystals by glycine-mediated sequential reduction kinetics. Small 2013, 9, 3063–3069.

    Article  Google Scholar 

  25. Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594–11597.

    Article  Google Scholar 

  26. Oh, A.; Baik, H.; Choi, D. S.; Cheon, J. Y.; Kim, B.; Kim, H.; Kwon, S. J.; Joo, S. H.; Jung, Y.; Lee, K. Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core–shell nanocrystal. ACS Nano 2015, 9, 2856–2867.

    Article  Google Scholar 

  27. Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.

    Article  Google Scholar 

  28. Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell. J. Mater. Chem. 2011, 21, 1925–1930.

    Article  Google Scholar 

  29. Sun, Q.; Liu, W.; Wang, R. M. Double-layered NiPt nanobowls with ultrathin shell synthesized in water at room temperature. CrystEngComm 2012, 14, 5151–5154.

    Article  Google Scholar 

  30. Liu, J. L.; Liu, W.; Sun, Q.; Wang, S. G.; Sun, K.; Schwank, J.; Wang, R. M. In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation. Chem. Commun. 2014, 50, 1804–1807.

    Article  Google Scholar 

  31. Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.; Wang, R. M. Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis. J. Mater. Chem. A 2015, 3, 1031–1036.

    Article  Google Scholar 

  32. Liu, J. L.; Xia, T. Y.; Wang, S. G.; Yang, G.; Dong, B. W.; Wang, C.; Ma, Q. D.; Sun, Y.; Wang, R. M. Orientedassembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale 2016, 8, 11432–11440.

    Article  Google Scholar 

  33. Mou, F. Z.; Xu, L. L.; Ma, H. R.; Guan, J. G.; Chen, D. R.; Wang, S. H. Facile preparation of magnetic gamma-Fe2O3/TiO2 janus hollow bowls with efficient visible-light photocatalytic activities by asymmetric shrinkage. Nanoscale 2012, 4, 4650–4657.

    Article  Google Scholar 

  34. Zhang, G. L.; Huang, C. D.; Qin, R. J.; Shao, Z. C.; An, D.; Zhang, W.; Wang, Y. X. Uniform Pd–Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation. J. Mater. Chem. A 2015, 3, 5204–5211.

    Article  Google Scholar 

  35. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

    Article  Google Scholar 

  36. Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angew. Chem. 2004, 43, 1540–1543.

    Article  Google Scholar 

  37. Li, X. L.; Zhang, Y. Z.; Shen, Z. X.; Fan, H. J. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced raman scattering. Small 2012, 8, 2548–2554.

    Article  Google Scholar 

  38. Liang, J.; Hu, H.; Park, H.; Xiao, C. H.; Ding, S. J.; Paik, U.; Lou, X. W. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 2015, 8, 1707–1711.

    Article  Google Scholar 

  39. Duan, S. B.; Wang, R. M. Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: In situ synthesis, evolution and supercapacitor properties. NPG Asia Mater. 2014, 6, e122.

    Article  Google Scholar 

  40. Xie, J. P.; Zhang, Q. B.; Zhou, W. J.; Lee, J. Y.; Wang, D. I. C. Template-free synthesis of porous platinum networks of different morphologies. Langmuir 2009, 25, 6454–6459.

    Article  Google Scholar 

  41. Kilin, D. S.; Prezhdo, O. V.; Xia, Y. N. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett. 2008, 458, 113–116.

    Article  Google Scholar 

  42. Bai, Z. Y.; Yang, L.; Zhang, J. S.; Li, L.; Hu, C. G.; Lv, J.; Guo, Y. M. High-efficiency carbon-supported platinum catalysts stabilized with sodium citrate for methanol oxidation. J. Power Sources 2010, 195, 2653–2658.

    Article  Google Scholar 

  43. Henglein, A.; Giersig, M. Reduction of Pt(II) by H2: Effects of citrate and NaOH and reaction mechanism. J. Phys. Chem. B 2000, 104, 6767–6772.

    Article  Google Scholar 

  44. Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736–2753.

    Article  Google Scholar 

  45. Kimiaie, N.; Wedlich, K.; Hehemann, M.; Lambertz, R.; Müller, M.; Korte, C.; Stolten, D. Results of a 20000 h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system–degradation of the DMFC stack and the energy storage. Energy Environ. Sci. 2014, 7, 3013–3025.

    Article  Google Scholar 

  46. Wang, N.; Xu, Y.; Han, Y.; Gao, C. Z.; Cao, X. Mesoporous Pd@M (M = Pt, Au) microrods as excellent electrocatalysts for methanol oxidation. Nano Energy 2015, 17, 111–119.

    Article  Google Scholar 

  47. Lu, Y. Z.; Jiang, Y. Y.; Chen, W. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation. Nanoscale 2014, 6, 3309–3315.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51371015 and 51331002), the Beijing Natural Science Foundation (No. 2142018) and the Fundamental Research Funds for the Central Universities (No. FRF-BR-15-009B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongming Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Cheng, M., Wang, Z. et al. Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance. Nano Res. 10, 187–198 (2017). https://doi.org/10.1007/s12274-016-1277-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1277-5

Keywords

Navigation