Skip to main content
Log in

Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain, in the framework of the 6 × 6 k·p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields to elucidate the effects of the piezoelectric potential and the deformation potential on the strain-dependent luminescence. The experimentally measured photoluminescence variation as a function of pressure can be qualitatively explained by the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manasevit, H. M.; Gergis, I. S.; Jones, A. B. Electron mobility enhancement in epitaxial multilayer Si-Si1−x Gex alloy films on (100) Si. Appl. Phys. Lett. 1982, 41, 464–466.

    Article  Google Scholar 

  2. Lee, M. L.; Fitzgerald, E. A.; Bulsara, M. T.; Currie, M. T.; Lochtefeld, A. Strained Si, SiGe, and Ge channels for highmobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2005, 97, 011101.

    Article  Google Scholar 

  3. Sun, Y.; Thompson, S. E.; Nishida, T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2007, 101, 104503.

    Article  Google Scholar 

  4. Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772.

    Article  Google Scholar 

  5. Wu, W. Z.; Wei, Y. G.; Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 2010, 22, 4711–4715.

    Article  Google Scholar 

  6. Peng, M. Z.; Liu, Y. D.; Yu, A. F.; Zhang, Y.; Liu, C. H.; Liu, J. Y.; Wu, W.; Zhang, K.; Shi, X. Q.; Kou, J. Z. et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 2016, 10, 1572–1579.

    Article  Google Scholar 

  7. Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

    Article  Google Scholar 

  8. Peng, M. Z.; Zhang, Y.; Liu, Y. D.; Song, M.; Zhai, J. Y.; Wang, Z. L. Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures. Adv. Mater. 2014, 26, 6767–6772.

    Article  Google Scholar 

  9. Shi, X. Q.; Peng, M. Z.; Kou, J. Z.; Liu, C. H.; Wang, R.; Liu, Y. D.; Zhai, J. Y. A flexible GaN nanowire array-based Schottky-type visible light sensor with strain-enhanced photoresponsivity. Adv. Electron. Mater. 2015, 1, 1500169.

    Article  Google Scholar 

  10. Hu, Y. F.; Zhang, Y.; Chang, Y. L.; Snyder, R. L.; Wang, Z. L. Optimizing the power output of a ZnO photocell by piezopotential. ACS Nano 2010, 4, 4220–4224.

    Article  Google Scholar 

  11. Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42–49.

    Article  Google Scholar 

  12. Bir, G. L.; Pikus, G. E. Symmetry and Strain-Induced Effects in Semiconductors; Wiley: New York, 1974.

    Google Scholar 

  13. Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

    Article  Google Scholar 

  14. Zhang, Y.; Wang, Z. L. Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 2012, 24, 4712–4718.

    Article  Google Scholar 

  15. Signorello, G.; Lörtscher, E.; Khomyakov, P. A.; Karg, S.; Dheeraj, D. L.; Gotsmann, B.; Weman, H.; Riel, H. Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 2014, 5, 3655.

    Article  Google Scholar 

  16. Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143–3150.

    Article  Google Scholar 

  17. Chuang, S. L.; Chang, C. S. k·p method for strained wurtzite semiconductors. Phys. Rev. B 1996, 54, 2491–2504.

    Article  Google Scholar 

  18. Kane, E. O. Band structure of indium antimonide. J. Phys. Chem. Solids 1957, 1, 249–261.

    Article  Google Scholar 

  19. Makimoto, T.; Kumakura, K.; Nishida, T.; Kobayashi, N. Valence-band discontinuities between InGaN and GaN evaluated by capacitance-voltage characteristics of p-InGaN/n-GaN diodes. J. Electron. Mater. 2002, 31, 313–315.

    Article  Google Scholar 

  20. Vurgaftman, I.; Meyer, J. R. Band parameters for nitrogencontaining semiconductors. J. Appl. Phys. 2003, 94, 3675–3696.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51472056 and 51402064), the “thousands talents” program for pioneer researcher and his innovation team, China, the Recruitment Program of Global Youth Experts, China and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2015387). M. W. acknowledges financial support from the Chinese Academy of Sciences and the Beijing Institute for Nanoenergy and Nanosystems.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morten Willatzen, Junyi Zhai or Zhong Lin Wang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Peng, M., Willatzen, M. et al. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures. Nano Res. 10, 134–144 (2017). https://doi.org/10.1007/s12274-016-1272-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1272-x

Keywords

Navigation