Skip to main content
Log in

Flammable carbon nanotube transistors on a nitrocellulose paper substrate for transient electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transient electronics represent an emerging class of technology comprising materials that can vanish in a controlled manner in response to stimuli. In contrast to conventional electronic devices that are designed to operate over the longest possible period, transient electronics are defined by operation typically over a short and well-defined period; when no longer needed, transient electronics undergo self-deconstruction and disappear completely. In this work, we demonstrate the fabrication of thermally triggered transient electronic devices based on a paper substrate, specifically, a nitrocellulose paper. Nitrocellulose paper is frequently used in acts of magic because it consists of highly flammable components that are formed by nitrating cellulose by exposure to nitric acid. Therefore, a complete and rapid destruction of electronic devices fabricated on nitrocellulose paper is possible without producing any residue (i.e., ash). The transience rates can be modified by controlling radio frequency signal-induced voltages that are applied to a silver (Ag) resistive heater, which is stamped on the backside of the nitrocellulose paper. The Ag resistive heater was prepared by a simple, low-cost stamping fabrication, which requires no harsh chemicals or complex thermal treatments. For the electronics on the nitrocellulose paper substrate, we employed semiconducting carbon nanotube (CNT) network channels in the transistor for superior electrical and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H. Y.; Song, J.-K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y.-S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.

    Article  Google Scholar 

  2. Kim, D. H.; Kim, Y. S.; Amsden, J.; Panilaitis, B.; Kaplan, D. L.; Omenetto, F. G.; Zakin, M. R.; Rogers, J. A. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 2009, 95, 133701.

    Article  Google Scholar 

  3. Kim, D.-H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y.-S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511–517.

    Article  Google Scholar 

  4. Bettinger, C. J.; Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 2010, 22, 651–655.

    Article  Google Scholar 

  5. Irimia-Vladu, M.; Troshin, P. A.; Reisinger, M.; Shmygleva, L.; Kanbur, Y.; Schwabegger, G.; Bodea, M.; Schwödiauer, R.; Mumyatov, A.; Fergus, J. W. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 2010, 20, 4069–4076.

    Article  Google Scholar 

  6. Hwang, S.-W.; Kang, S.-K.; Huang, X.; Brenckle, M. A.; Omenetto, F. G.; Rogers, J. A. Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 2015, 27, 47–52.

    Article  Google Scholar 

  7. Brenckle, M. A.; Cheng, H. Y.; Hwang, S.; Tao, H.; Paquette, M.; Kaplan, D. L.; Rogers, J. A.; Huang, Y. G.; Omenetto, F. G. Modulated degradation of transient electronic devices through multilayer silk fibroin pockets. ACS Appl. Mater. Interfaces 2015, 7, 19870–19875.

    Article  Google Scholar 

  8. Jin, S. H.; Shin, J.; Cho, I. T.; Han, S. Y.; Lee, D. J.; Lee, C. H.; Lee, J. H.; Rogers, J. A. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 2014, 105, 013506.

    Article  Google Scholar 

  9. Hwang, S.-W.; Park, G.; Edwards, C.; Corbin, E. A.; Kang, S.-K.; Cheng, H. Y.; Song, J.-K.; Kim, J.-H.; Yu, S.; Ng, J. et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 2014, 8, 5843–5851.

    Article  Google Scholar 

  10. Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

  11. Yin, L.; Cheng, H. Y.; Mao, S. M.; Haasch, R.; Liu, Y. H.; Xie, X.; Hwang, S. W.; Jain, H.; Kang, S. K.; Su, Y. W. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 2014, 24, 645–658.

    Article  Google Scholar 

  12. Kang, S. K.; Hwang, S. W.; Cheng, H. Y.; Yu, S.; Kim, B. H.; Kim, J. H.; Huang, Y. G.; Rogers, J. A. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 2014, 24, 4427–4434.

    Article  Google Scholar 

  13. Hernandez, H. L.; Kang, S.-K.; Lee, O. P.; Hwang, S.-W.; Kaitz, J. A.; Inci, B.; Park, C. W.; Chung, S.; Sottos, N. R.; Moore, J. S. et al. Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 2014, 26, 7637–7642.

    Article  Google Scholar 

  14. Park, C. W.; Kang, S.-K.; Hernandez, H. L.; Kaitz, J. A.; Wie, D. S.; Shin, J.; Lee, O. P.; Sottos, N. R.; Moore, J. S.; Rogers, J. A. et al. Thermally triggered degradation of transient electronic devices. Adv. Mater. 2015, 27, 3783–3788.

    Article  Google Scholar 

  15. Lee, C. H.; Kang, S. K.; Salvatore, G. A.; Ma, Y. J.; Kim, B. H.; Jiang, Y.; Kim, J. S.; Yan, L. Q.; Wie, D. S.; Banks, A. et al. Wireless microfluidic systems for programmed, functional transformation of transient electronic devices. Adv. Funct. Mater. 2015, 25, 5100–5106.

    Article  Google Scholar 

  16. Acar, H.; Çinar, S.; Thunga, M.; Kessler, M. R.; Hashemi, N.; Montazami, R. Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv. Funct. Mater. 2014, 24, 4135–4143.

    Article  Google Scholar 

  17. Wang, H.; Shi, Z. In vitro biodegradation behavior of magnesium and magnesium alloy. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98, 203–209.

    Article  Google Scholar 

  18. Bevers, L. E.; Hagedoorn, P. L.; Hagen, W. R. The bioinorganic chemistry of tungsten. Coord. Chem. Rev. 2009, 253, 269–290.

    Article  Google Scholar 

  19. Peuster, M.; Fink, C.; von Schnakenburg, C. Biocompatibility of corroding tungsten coils: In vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials 2003, 24, 4057–4061.

    Article  Google Scholar 

  20. Dagdeviren, C.; Hwang, S.-W.; Su, Y. W.; Kim, S.; Cheng, H. Y.; Gur, O.; Haney, R.; Omenetto, F. G.; Huang, Y. G.; Rogers, J. A. Transient, biocompatible electronics and energy harvesters based on ZnO. Small 2013, 9, 3398–3404.

    Article  Google Scholar 

  21. Lam, C. X. F.; Savalani, M. M.; Teoh, S.-H.; Hutmacher, D. W. Dynamics of in vitro polymer degradation of polycaprolactonebased scaffolds: Accelerated versus simulated physiological conditions. Biomed. Mater. 2008, 3, 034108.

    Article  Google Scholar 

  22. Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256.

    Article  Google Scholar 

  23. Sabir, M. I.; Xu, X. X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009, 44, 5713–5724.

    Article  Google Scholar 

  24. Chiu, L. K.; Chiu, W. J.; Cheng, Y.-L. Effects of polymer degradation on drug released—A mechanistic study of morphology and transport properties in 50:50 poly(dl-lactideco- glycolide). Int. J. Pharm. 1995, 126, 169–178.

    Article  Google Scholar 

  25. Siegel, A. C.; Phillips, S. T.; Dickey, M. D.; Lu, N. S.; Suo, Z. G.; Whitesides, G. M. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 2010, 20, 28–35.

    Article  Google Scholar 

  26. Tobjörk, D.; Österbacka, R. Paper electronics. Adv. Mater. 2011, 23, 1935–1961.

    Google Scholar 

  27. Eder, F.; Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Dehm, C. Organic electronics on paper. Appl. Phys. Lett. 2004, 84, 2673.

    Article  Google Scholar 

  28. Kim, Y.-H.; Moon, D.-G.; Han, J.-I. Organic TFT array on a paper substrate. IEEE Electron Dev. Lett. 2004, 25, 702–704.

    Article  Google Scholar 

  29. Lien, D.-H.; Kao, Z.-K.; Huang, T. H.; Liao, Y.-C.; Lee, S.-C.; He, J.-H. All-printed paper memory. ACS Nano 2014, 8, 7613–7619.

    Article  Google Scholar 

  30. Wang, C.; Chien, J.-C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, highperformance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.

    Article  Google Scholar 

  31. Snow, E. S.; Campbell, P. M.; Ancona, M. G.; Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 2005, 86, 033105.

    Article  Google Scholar 

  32. Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

    Article  Google Scholar 

  33. Cao, Q.; Kim, H.-S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  Google Scholar 

  34. Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

    Article  Google Scholar 

  35. Zhang, J. L.; Wang, C.; Zhou, C. W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.

    Article  Google Scholar 

  36. Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.

    Article  Google Scholar 

  37. Li, J. P.; Liang, J. J.; Jian, X.; Hu, W.; Li, J.; Pei, Q. B. A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite. Macromol. Mater. Eng. 2014, 299, 1403–1409.

    Article  Google Scholar 

  38. Lee, C. H.; Kim, D. R.; Zheng, X. L. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. Nano Lett. 2011, 11, 3435–3439.

    Article  Google Scholar 

  39. Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 2013, 12, 403–409.

    Article  Google Scholar 

  40. Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-? oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

    Article  Google Scholar 

  41. Kim, U. J.; Son, H. B.; Lee, E. H.; Kim, J. M.; Min, S. C.; Park, W. Charge conversion effects of carbon nanotube network transistors by temperature for Al2O3 gate dielectric formation. Appl. Phys. Lett. 2010, 97, 032117.

    Article  Google Scholar 

  42. Kim, B.; Geier, M. L.; Hersam, M. C.; Dodabalapur, A. Inkjet printed circuits on flexible and rigid substrates based on ambipolar carbon nanotubes with high operational stability. ACS Appl. Mater. Interfaces 2015, 7, 27654–27660.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Research Foundation of Korea through the Ministry of Edu cation, Science and Technology, Korean Government (Nos. 2013R1A1A1057870 and 2016R1A2B4011366) and partially supported by No. 2016R1A5A1012966. We thank Professor Jeffrey Bokor for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungho Kim or Sung-Jin Choi.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Lee, J., Choi, B. et al. Flammable carbon nanotube transistors on a nitrocellulose paper substrate for transient electronics. Nano Res. 10, 87–96 (2017). https://doi.org/10.1007/s12274-016-1268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1268-6

Keywords

Navigation