Skip to main content
Log in

Direct observation of metastable face-centered cubic Sb2Te3 crystal

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although phase change memory technology has developed drastically in the past two decades, the cognition of the key switching materials still ignores an important member, the face-centered cubic Sb2Te3. Apart from the well-known equilibrium hexagonal Sb2Te3 crystal, we prove the metastable face-centered cubic Sb2Te3 phase does exist. Such a metastable crystal contains a large concentration of vacancies randomly occupying the cationic lattice sites. The face-centered cubic to hexagonal phase transformation of Sb2Te3, accompanied by vacancy aggregation, occurs at a quite lower temperature compared to that of Ge2Sb2Te5 alloy. We prove that the covalent-like bonds prevail in the metastable Sb2Te3 crystal, deviating from the ideal resonant features. If a proper doping technique is adopted, the metastable Sb2Te3 phase could be promising for realizing reversibly swift and low-energy phase change memory applications. Our study may offer a new insight into commercialized Ge–Sb–Te systems and help in the design of novel phase change materials to boost the performances of the phase change memory device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong, H.-S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.

    Article  Google Scholar 

  2. Choi, Y.; Song, I.; Park, M. H.; Chung, H.; Chang, S.; Cho, B.; Kim, J.; Oh, Y.; Kwon, D.; Sunwoo, J. et al. A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. In Proceedings of the 2012 IEEE Solid-State Circuits Conference, San Francisco, CA, 2012, pp 46–48.

    Chapter  Google Scholar 

  3. Villa, C.; Mills, D.; Barkley, G.; Giduturi, H.; Schippers, S.; Vimercati, D. A 45nm 1Gb 1.8V phase-change memory. In Proceedings of the 2010 IEEE Solid-State Circuits Conference, San Francisco, CA, 2010, pp 270–271.

  4. Wuttig, M. Phase-change materials: Towards a universal memory? Nat. Mater. 2005, 4, 265–266.

    Google Scholar 

  5. Atwood, G. Phase-change materials for electronic memories. Science 2008, 321, 210–211.

    Article  Google Scholar 

  6. Yamada, N.; Ohno, E.; Nishiuchi, K.; Akahira, N.; Takao, M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 1991, 69, 2849–2856.

    Article  Google Scholar 

  7. Friedrich, I.; Weidenhof, V.; Njoroge, W.; Franz, P.; Wuttig, M. Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 2000, 87, 4130–4134.

    Article  Google Scholar 

  8. Cheng, H. Y.; Hsu, T. H.; Raoux, S.; Wu, J. Y.; Du, P. Y.; Breitwisch, M.; Zhu, Y.; Lai, E. K.; Joseph, E.; Mittal, S. et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. In Proceedings of the 2011 IEEE International Electron Devices Meeting, Washington, DC, 2011, pp 3.4.1–3.4.4.

    Google Scholar 

  9. Kolobov, A. V.; Fons, P.; Frenkel, A. I.; Ankudinov, A. L.; Tominaga, J.; Uruga, T. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 2004, 3, 703–708.

    Article  Google Scholar 

  10. Xu, M.; Cheng, Y. Q.; Sheng, H. W.; Ma. E. Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys. Rev. Lett. 2009, 103, 195502.

    Article  Google Scholar 

  11. Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653–658.

    Article  Google Scholar 

  12. Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977.

    Article  Google Scholar 

  13. Kolobov, A. V.; Fons, P.; Tominaga, J.; Hase, M. Excitationassisted disordering of GeTe and related solids with resonant bonding. J. Phys. Chem. C 2014, 118, 10248–10253.

    Article  Google Scholar 

  14. Kolobov, A. V.; Fons, P.; Tominaga, J.; Frenkel, A. I.; Ankudinov, A. L.; Yannopoulos, S. N.; Andrikopoulos, K. S.; Uruga, T. Why phase-change media are fast and stable: A new approach to an old problem. Jpn. J. Appl. Phys. 2005, 44, 3345–3349.

    Article  Google Scholar 

  15. Sun, Z. M.; Zhou, J.; Mao, H. K.; Ahuja, R. Peierls distortion mediated reversible phase transition in GeTe under pressure. Proc. Natl. Acad. Sci. USA 2012, 109, 5948–5952.

    Article  Google Scholar 

  16. Kolobov, A. V.; Fons, P.; Tominaga, J.; Ovshinsky, S. R. Vacancy-mediated three-center four-electron bonds in GeTe-Sb2Te3 phase-change memory alloys. Phys. Rev. B 2013, 87, 165206.

    Article  Google Scholar 

  17. Da Silva, J. L. F.; Walsh, A.; Lee, H. Insights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compounds. Phys. Rev. B 2008, 78, 224111.

    Article  Google Scholar 

  18. Zhang, W.; Thiess, A.; Zalden, P.; Zeller, R.; Dederichs, P. H.; Raty, J.-Y.; Wuttig, M.; Blügel, S.; Mazzarello, R. Role of vacancies in metal–insulator transitions of crystalline phasechange materials. Nat. Mater. 2012, 11, 952–956.

    Article  Google Scholar 

  19. Yin, Y.; Sone, H.; Hosaka, S. Characterization of nitrogendoped Sb2Te3 films and their application to phase-change memory. J. Appl. Phys. 2007, 102, 064503.

    Article  Google Scholar 

  20. Zhu, M.; Xia, M. J.; Rao, F.; Li, X. B.; Wu, L. C.; Ji, X. L.; Lv, S. L.; Song, Z. T.; Feng, S. L.; Sun, H. B. et al. One order of magnitude faster phase change at reduced power in Ti-Sb-Te. Nat. Commun. 2014, 5, 4086.

    Google Scholar 

  21. Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed.; Springer: Berlin, 2009.

    Book  Google Scholar 

  22. Waldecker, L.; Miller, T. A.; Rudé, M.; Bertoni, R.; Osmond, J.; Pruneri, V.; Simpson, R. E.; Ernstorfer, R.; Wall, S. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 2015, 14, 991–995.

    Article  Google Scholar 

  23. Yu, J. L.; Liu, B.; Zhang, T.; Song, Z. T.; Feng, S. L.; Chen, B. Effects of Ge doping on the properties of Sb2Te3 phasechange thin films. Appl. Surf. Sci. 2007, 253, 6125–6129.

    Article  Google Scholar 

  24. Spence, J. C. H. High-Resolution Electron Microscopy, 3rd ed.; Oxford University Press: New York, 2003.

    Google Scholar 

  25. Sun, Z. M.; Zhou, J.; Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 2006, 96, 055507.

    Article  Google Scholar 

  26. Caravati, S.; Bernasconi, M.; Parrinello, M. First-principles study of liquid and amorphous Sb2Te3. Phys. Rev. B 2010, 81, 014201.

    Article  Google Scholar 

  27. Kolobov, A. V.; Fons, P.; Tominaga, J. p-type conductivity of GeTe: The role of lone-pair electrons. Phys. Status Solidi B 2012, 249, 1902–1906.

    Article  Google Scholar 

  28. Kastner, M.; Adler, D.; Fritzsche, H. Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 1976, 37, 1504–1507.

    Article  Google Scholar 

  29. Sun, Z. M.; Zhou, J.; Blomqvist, A.; Johansson, B.; Ahuja, R. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy. Phys. Rev. Lett. 2009, 102, 075504.

    Article  Google Scholar 

  30. Rao, F.; Song, Z. T.; Ren, K.; Zhou, X. L.; Cheng, Y.; Wu, L. C.; Liu, B. Si–Sb–Te materials for phase change memory applications. Nanotechnology 2011, 22, 145702.

    Article  Google Scholar 

  31. Zhou, X. L.; Xia, M. J.; Rao, F.; Wu, L. C.; Li, X. B.; Song, Z. T.; Feng, S. L.; Sun, H. B. Understanding phase-change behaviors of carbon-doped Ge2Sb2Te5 for phase-change memory application. ACS Appl. Mater. Interfaces 2014, 6, 14207–14214.

    Article  Google Scholar 

  32. Kooi, B. J.; Groot, W. M. G.; De Hosson, J. Th. M. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys. 2004, 95, 924–932.

    Article  Google Scholar 

  33. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  34. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  36. Perdew, J. P.; Burke, K.; Ernzerhof, M.; Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Cheng, Feng Rao or Zhitang Song.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Xia, M., Cheng, Y. et al. Direct observation of metastable face-centered cubic Sb2Te3 crystal. Nano Res. 9, 3453–3462 (2016). https://doi.org/10.1007/s12274-016-1221-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1221-8

Keywords

Navigation