Skip to main content
Log in

Solution processed MnBi-FeCo magnetic nanocomposites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Advanced permanent magnets based on rare-earth-free MnBi intermetallic alloys are considered energy-critical materials due to their applications in high temperature power electronics and green energy-related generators and motors, owing to their positive temperature coefficient of magnetic anisotropy. However, a direct method to achieve high saturation magnetization, without the significant loss of coercivity, is critical for attaining high performance MnBi magnets. Here, we demonstrate the synthesis and processing of magnetic nanocomposites, consisting of metal-redox MnBi nanoparticles and electro-spun FeCo nanowires. The composition ratio, processing dependent magnetism, and increased coercivity with increasing temperature, were studied in MnBi-FeCo nanocomposites. The magnetic performance of nanocomposites was dictated by interfacial coupling between magnetically hard MnBi and semi-hard FeCo nanowires, as well as the composition ratio and processing conditions. Solution processed MnBi-FeCo nanocomposites allow the potential for the development of high temperature and high performance rare-earth-free permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coey, J. M. D. Permanent magnetism. Solid State Commun. 1997, 102, 101–105.

    Article  Google Scholar 

  2. Jones, N. The pull of stronger magnets. Nature 2011, 472, 22–23.

    Article  Google Scholar 

  3. Weller, D.; Parker, G.; Mosendz, O.; Champion, E.; Stipe, B.; Wang, X. B.; Klemmer, T.; Ju, G. P.; Ajan, A. A HAMR media technology roadmap to an areal density of 4 Tb/in2. IEEE T. Magn. 2014, 50, 3100108.

    Article  Google Scholar 

  4. Yang, J. B.; Yang, Y. B.; Chen, X. G.; Ma, X. B.; Han, J. Z.; Yang, Y. C.; Guo, S.; Yan, A. R.; Huang, Q. Z.; Wu, M. M. et al. Anisotropic nanocrystalline MnBi with high coercivity at high temperature. Appl. Phys. Lett. 2011, 99, 082505.

    Article  Google Scholar 

  5. Albert, P. A.; Carr, W. J., Jr. Temperature dependence of magnetostriction and anisotropy in MnBi. J. Appl. Phys. 1961, 32, S201–S202.

    Article  Google Scholar 

  6. Koyama, K.; Onogi, T.; Mitsui, Y.; Nakamori, Y.; Orimo, S. I.; Watanabe, K. Magnetic phase transition of MnBi under high magnetic fields and high temperature. Mater. Trans. 2007, 48, 2414–2418.

    Article  Google Scholar 

  7. Saha, S.; Obermyer, R. T.; Zande, B. J.; Chandhok, V. K.; Simizu, S.; Sankar, S. G.; Horton, J. A. Magnetic properties of the low-temperature phase of MnBi. J. Appl. Phys. 2002, 91, 8525–8527.

    Article  Google Scholar 

  8. Yang, J. B.; Yelon, W. B.; James, W. J.; Cai, Q.; Roy, S.; Ali, N. Structure and magnetic properties of the MnBi low temperature phase. J. Appl. Phys. 2002, 91, 7866–7868.

    Article  Google Scholar 

  9. Kharel, P.; Shah, V. R.; Skomski, R.; Shield, J. E.; Sellmyer, D. J. Magnetism of MnBi-based nanomaterials. IEEE T. Magn. 2013, 49, 3318–3321.

    Article  Google Scholar 

  10. Chen, D.; Aagard, R. L.; Liu, T. S. Magneto-optic properties of quenched thin films of MnBi and optical memory experiments. J. Appl. Phys. 1970, 41, 1395–1396.

    Article  Google Scholar 

  11. Kharel, P.; Shah, V. R.; Li, X. Z.; Zhang, W. Y.; Skomski, R.; Shield, J. E.; Sellmyer, D. J. Structural and magnetic properties of Pr-alloyed MnBi nanostructures. J. Phys. D: Appl. Phys. 2013, 46, 095003.

    Article  Google Scholar 

  12. Li, Y. Q.; Yue, M.; Zuo, J. H.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W. Investigation of magnetic properties of MnBi/α-Fe nanocomposite permanent magnets by micro-magnetic simulation. IEEE T. Magn. 2013, 49, 3391–3393.

    Article  Google Scholar 

  13. Suzuki, Y.; van Dover, R. B.; Gyorgy, E. M.; Phillips, J. M.; Felder, R. J. Exchange coupling in single-crystalline spinelstructure (Mn, Zn)Fe2O4/CoFe2O4 bilayers. Phys. Rev. B 1996, 53, 14016–14019.

    Article  Google Scholar 

  14. Gong, M. G.; Kirkeminde, A.; Skomski, R.; Cui, J.; Ren, S. Q. Template-directed FeCo nanoshells on AuCu. Small 2014, 10, 4118–4122.

    Article  Google Scholar 

  15. Kirkeminde, A.; Shen, J.; Gong, M. G.; Cui, J.; Ren, S. Q. Metal-redox synthesis of MnBi hard magnetic nanoparticles. Chem. Mater. 2015, 27, 4677–4681.

    Article  Google Scholar 

  16. Gallardo, I.; Pinson, J.; Vilà, N. Spontaneous attachment of amines to carbon and metallic surfaces. J. Phys. Chem. B 2006, 110, 19521–19529.

    Article  Google Scholar 

  17. Liu, F.; Hou, Y. L.; Gao, S. Exchange-coupled nanocomposites: Chemical synthesis, characterization and applications. Chem. Soc. Rev. 2014, 43, 8098–8113.

    Article  Google Scholar 

  18. Liu, F.; Zhu, J. H.; Yang, W. L.; Dong, Y. H.; Hou, Y. L.; Zhang, C. Z.; Yin, H.; Sun, S. H. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem., Int. Ed. 2014, 53, 2176–2180.

    Article  Google Scholar 

  19. Umetsu, N.; Sakuma, A.; Toga, Y. First-principles study of interface magnetic structure in Nd2Fe14B/(Fe, Co) exchange spring magnets. Phys. Rev. B 2016, 93, 014408.

    Article  Google Scholar 

  20. Yang, C.; Jia, L. H.; Wang, S. G.; Gao, C.; Shi, D. W.; Hou, Y. L.; Gao. S. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: A novel chemical approach. Sci. Rep. 2013, 3, 3542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenqiang Ren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Asif warsi, M., Xiao, J.Q. et al. Solution processed MnBi-FeCo magnetic nanocomposites. Nano Res. 9, 3222–3228 (2016). https://doi.org/10.1007/s12274-016-1200-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1200-0

Keywords

Navigation