Skip to main content
Log in

Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNRs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (LIBs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

    Article  Google Scholar 

  2. Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480–3498.

    Article  Google Scholar 

  3. Su, Y. Z.; Li, S.; Wu, D. Q.; Zhang, F.; Liang, H. W.; Gao, P. F.; Cheng, C.; Feng, X. L. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349–8356.

    Article  Google Scholar 

  4. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  5. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  6. Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. J. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437–1445.

    Article  Google Scholar 

  7. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

    Article  Google Scholar 

  8. Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  9. Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720–4728.

    Article  Google Scholar 

  10. Su, Q. M.; Xie, J.; Zhang, J.; Zhong, Y. J.; Du, G. H.; Xu, B. S. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 3016–3022.

    Article  Google Scholar 

  11. Su, C. W.; Li, J.-M.; Yang, W.; Guo, J. M. Electrodeposition of Nis3S2/Ni composites as high-performance cathodes for lithium batteries. J. Phys. Chem. C 2014, 118, 767–773.

    Article  Google Scholar 

  12. Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.

    Article  Google Scholar 

  13. Zheng, S. Y.; Chen, Y.; Xu, Y. H.; Yi, F.; Zhu, Y. J.; Liu, Y. H.; Yang, J. H.; Wang, C. S. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. ACS Nano 2013, 7, 10995–11003.

    Article  Google Scholar 

  14. Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713–4721.

    Article  Google Scholar 

  15. Wu, B.; Song, H. H.; Zhou, J. S.; Chen, X. H. Iron sulfideembedded carbon microsphere anode material with high-rate performance for lithium-ion batteries. Chem. Commun. 2011, 47, 8653–8655.

    Article  Google Scholar 

  16. Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; Xie, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330–5335.

    Article  Google Scholar 

  17. Wang, X. F.; Xiang, Q. Y.; Liu, B.; Wang, L. J.; Luo, T.; Chen, D.; Shen, G. Z. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013, 3, 2007.

    Google Scholar 

  18. Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for highperformance lithium ion batteries. Adv. Mater. 2013, 25, 6298–6302.

    Article  Google Scholar 

  19. Genorio, B.; Lu, W.; Dimiev, A. M.; Zhu, Y.; Raji, A. R. O.; Novosel, B.; Alemany, L. B.; Tour, J. M. In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks. ACS Nano 2012, 6, 4231–4240.

    Article  Google Scholar 

  20. Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.

    Article  Google Scholar 

  21. Dong, C. C.; Zheng, X. D.; Huang, B.; Lu, M. Enhanced electrochemical performance of FeS coated by Ag as anode for lithium-ion batteries. Appl. Surf. Sci. 2013, 265, 114–119.

    Article  Google Scholar 

  22. Saadat, S.; Tay, Y. Y.; Zhu, J. X.; Teh, P. F.; Maleksaeedi, S.; Shahjamali, M. M.; Shakerzadeh, M.; Srinivasan, M.; Tay, B. Y.; Hng, H. H. et al. Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-ion battery anodes. Chem. Mater. 2011, 23, 1032–1038.

    Article  Google Scholar 

  23. Kim, Y.; Goodenough, J. B. Lithium insertion into transitionmetal monosulfides: Tuning the position of the metal 4s band. J. Phys. Chem. C 2008, 112, 15060–15064.

    Article  Google Scholar 

  24. Golodnitsky, D.; Peled, E. Pyrite as cathode insertion material in rechargeable lithium/composite polymer electrolyte batteries. Electrochim. Acta 1999, 45, 335–350.

    Article  Google Scholar 

  25. Lai, H.; Li, J. X.; Chen, Z. G.; Huang, Z. G. Carbon nanohorns As a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 2325–2328.

    Article  Google Scholar 

  26. Seo, J.-W.; Jun, Y.-W.; Park, S. W.; Nah, H.; Moon, T.; Park, B.; Kim, J.-G.; Kim, Y. J.; Cheon, J. Two-dimensional nanosheet crystals. Angew. Chem., Int. Ed. 2007, 46, 8828–8831.

    Article  Google Scholar 

  27. Kim, B. C.; Takada, K.; Ohta, N.; Seino, Y.; Zhang, L. Q.; Wada, H.; Sasaki, T. All solid state Li-ion secondary battery with FeS anode. Solid State Ionics 2005, 176, 2383–2387.

    Article  Google Scholar 

  28. Qian, D. N.; Xu, B.; Cho, H.-M.; Hatsukade, T.; Carroll, K. J.; Meng, Y. S. Lithium lanthanum titanium oxides: A fast ionic conductive coating for lithium-ion battery cathodes. Chem. Mater. 2012, 24, 2744–2751.

    Article  Google Scholar 

  29. Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Mü llen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838–842.

    Article  Google Scholar 

  30. Han, H.; Song, T.; Lee, E. K.; Devadoss, A.; Jeon, Y.; Ha, J.; Chung, Y.-C.; Choi, Y.-M.; Jung, Y.-G.; Paik, U. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano 2012, 6, 8308–8315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Tour.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Gao, C., Kovalchuk, A. et al. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 9, 2904–2911 (2016). https://doi.org/10.1007/s12274-016-1175-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1175-x

Keywords

Navigation