Advertisement

Nano Research

, Volume 9, Issue 10, pp 2904–2911 | Cite as

Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries

  • Lei Li
  • Caitian Gao
  • Anton Kovalchuk
  • Zhiwei Peng
  • Gedeng Ruan
  • Yang Yang
  • Huilong Fei
  • Qifeng Zhong
  • Yilun Li
  • James M. Tour
Research Article

Abstract

Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNRs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (LIBs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.

Keywords

lithium ion battery iron sulfide graphene nanoribbons graphene energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1175_MOESM1_ESM.pdf (1.6 mb)
Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries

References

  1. [1]
    Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.CrossRefGoogle Scholar
  2. [2]
    Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480–3498.CrossRefGoogle Scholar
  3. [3]
    Su, Y. Z.; Li, S.; Wu, D. Q.; Zhang, F.; Liang, H. W.; Gao, P. F.; Cheng, C.; Feng, X. L. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349–8356.CrossRefGoogle Scholar
  4. [4]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.CrossRefGoogle Scholar
  5. [5]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  6. [6]
    Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. J. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437–1445.CrossRefGoogle Scholar
  7. [7]
    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.CrossRefGoogle Scholar
  8. [8]
    Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.CrossRefGoogle Scholar
  9. [9]
    Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720–4728.CrossRefGoogle Scholar
  10. [10]
    Su, Q. M.; Xie, J.; Zhang, J.; Zhong, Y. J.; Du, G. H.; Xu, B. S. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 3016–3022.CrossRefGoogle Scholar
  11. [11]
    Su, C. W.; Li, J.-M.; Yang, W.; Guo, J. M. Electrodeposition of Nis3S2/Ni composites as high-performance cathodes for lithium batteries. J. Phys. Chem. C 2014, 118, 767–773.CrossRefGoogle Scholar
  12. [12]
    Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.CrossRefGoogle Scholar
  13. [13]
    Zheng, S. Y.; Chen, Y.; Xu, Y. H.; Yi, F.; Zhu, Y. J.; Liu, Y. H.; Yang, J. H.; Wang, C. S. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. ACS Nano 2013, 7, 10995–11003.CrossRefGoogle Scholar
  14. [14]
    Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713–4721.CrossRefGoogle Scholar
  15. [15]
    Wu, B.; Song, H. H.; Zhou, J. S.; Chen, X. H. Iron sulfideembedded carbon microsphere anode material with high-rate performance for lithium-ion batteries. Chem. Commun. 2011, 47, 8653–8655.CrossRefGoogle Scholar
  16. [16]
    Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; Xie, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330–5335.CrossRefGoogle Scholar
  17. [17]
    Wang, X. F.; Xiang, Q. Y.; Liu, B.; Wang, L. J.; Luo, T.; Chen, D.; Shen, G. Z. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013, 3, 2007.Google Scholar
  18. [18]
    Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for highperformance lithium ion batteries. Adv. Mater. 2013, 25, 6298–6302.CrossRefGoogle Scholar
  19. [19]
    Genorio, B.; Lu, W.; Dimiev, A. M.; Zhu, Y.; Raji, A. R. O.; Novosel, B.; Alemany, L. B.; Tour, J. M. In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks. ACS Nano 2012, 6, 4231–4240.CrossRefGoogle Scholar
  20. [20]
    Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.CrossRefGoogle Scholar
  21. [21]
    Dong, C. C.; Zheng, X. D.; Huang, B.; Lu, M. Enhanced electrochemical performance of FeS coated by Ag as anode for lithium-ion batteries. Appl. Surf. Sci. 2013, 265, 114–119.CrossRefGoogle Scholar
  22. [22]
    Saadat, S.; Tay, Y. Y.; Zhu, J. X.; Teh, P. F.; Maleksaeedi, S.; Shahjamali, M. M.; Shakerzadeh, M.; Srinivasan, M.; Tay, B. Y.; Hng, H. H. et al. Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-ion battery anodes. Chem. Mater. 2011, 23, 1032–1038.CrossRefGoogle Scholar
  23. [23]
    Kim, Y.; Goodenough, J. B. Lithium insertion into transitionmetal monosulfides: Tuning the position of the metal 4s band. J. Phys. Chem. C 2008, 112, 15060–15064.CrossRefGoogle Scholar
  24. [24]
    Golodnitsky, D.; Peled, E. Pyrite as cathode insertion material in rechargeable lithium/composite polymer electrolyte batteries. Electrochim. Acta 1999, 45, 335–350.CrossRefGoogle Scholar
  25. [25]
    Lai, H.; Li, J. X.; Chen, Z. G.; Huang, Z. G. Carbon nanohorns As a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 2325–2328.CrossRefGoogle Scholar
  26. [26]
    Seo, J.-W.; Jun, Y.-W.; Park, S. W.; Nah, H.; Moon, T.; Park, B.; Kim, J.-G.; Kim, Y. J.; Cheon, J. Two-dimensional nanosheet crystals. Angew. Chem., Int. Ed. 2007, 46, 8828–8831.CrossRefGoogle Scholar
  27. [27]
    Kim, B. C.; Takada, K.; Ohta, N.; Seino, Y.; Zhang, L. Q.; Wada, H.; Sasaki, T. All solid state Li-ion secondary battery with FeS anode. Solid State Ionics 2005, 176, 2383–2387.CrossRefGoogle Scholar
  28. [28]
    Qian, D. N.; Xu, B.; Cho, H.-M.; Hatsukade, T.; Carroll, K. J.; Meng, Y. S. Lithium lanthanum titanium oxides: A fast ionic conductive coating for lithium-ion battery cathodes. Chem. Mater. 2012, 24, 2744–2751.CrossRefGoogle Scholar
  29. [29]
    Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Mü llen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838–842.CrossRefGoogle Scholar
  30. [30]
    Han, H.; Song, T.; Lee, E. K.; Devadoss, A.; Jeon, Y.; Ha, J.; Chung, Y.-C.; Choi, Y.-M.; Jung, Y.-G.; Paik, U. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano 2012, 6, 8308–8315.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lei Li
    • 1
  • Caitian Gao
    • 1
    • 2
  • Anton Kovalchuk
    • 1
  • Zhiwei Peng
    • 1
  • Gedeng Ruan
    • 1
  • Yang Yang
    • 1
    • 3
  • Huilong Fei
    • 1
  • Qifeng Zhong
    • 1
    • 4
  • Yilun Li
    • 1
  • James M. Tour
    • 1
    • 3
    • 5
  1. 1.Department of ChemistryRice UniversityHoustonUSA
  2. 2.School of Physical Science and TechnologyLanzhou UniversityLanzhouChina
  3. 3.NanoCarbon CenterRice UniversityHoustonUSA
  4. 4.State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
  5. 5.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA

Personalised recommendations