Skip to main content
Log in

Anomalously enhanced thermal stability of phosphorene via metal adatom doping: An experimental and first-principles study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomically thin black phosphorus, also known as phosphorene, is an emerging two-dimensional (2D) material, which has attracted increasing attention due to its unique electronic and optoelectronic properties. However, the reduced thermal stability of phosphorene limits its suitability for high-temperature fabrication processes, which could be detrimental for the performance of phosphorenebased devices. Here, we investigate the impact of doping by Al and Hf transition metal adatoms on the thermal stability of phosphorene. The formation of Al–P covalent bonds was found to significantly improve the thermal coefficients of the A 1g , B2g, and A 2g phonon modes to 0.00044, 0.00081, and 0.00012 cm–1·°C–1, respectively, which are two orders of magnitude lower than those observed for pristine P–P bonds (~0.01 cm–1·°C–1). First-principles calculations within the density functional theory framework reveal that the observed thermal stability enhancement in the Al-doped material reflects a significantly higher Al binding energy, due to the stronger Al–P bonds compared to the weak van der Waals interactions between adjacent P atoms in the undoped material. The present work thus paves the way towards phosphorene materials with improved structural stability, which could be promising candidates for potential nanoelectronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.

    Article  Google Scholar 

  2. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 1963, 34, 1853–1860.

    Article  Google Scholar 

  3. Narita, S.; Akahama, Y.; Tsukiyama, Y.; Muro, K.; Mori, S.; Endo, S.; Taniguchi, M.; Seki, M.; Suga, S.; Mikuni, A. et al. Electrical and optical properties of black phosphorus single crystals. Physica B+C 1983, 117–118, 422–424.

    Article  Google Scholar 

  4. Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Synthesis and some properties of black phosphorus single crystals. Physica B+C 1981, 105, 99–102.

    Article  Google Scholar 

  5. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

    Article  Google Scholar 

  6. Baba, M.; Nakamura, Y.; Takeda, Y.; Shibata, K.; Morita, A.; Koike, Y.; Fukase, T. Hall effect and two-dimensional electron gas in black phosphorus. J. Phys.: Condens. Mat. 1992, 4, 1535–1544.

    Google Scholar 

  7. Shulenburger, L.; Baczewski, A. D.; Zhu, Z.; Guan, J.; Tomá nek, D. The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 2015, 15, 8170–8175.

    Article  Google Scholar 

  8. Li, L. K.; Yu, Y.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  9. Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Neto, A. C.; Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106.

    Article  Google Scholar 

  10. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Google Scholar 

  11. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  Google Scholar 

  12. Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguideintegrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.

    Google Scholar 

  13. Buscema, M.; Groenendijk, D. J.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PNjunctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.

    Article  Google Scholar 

  14. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  15. Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

    Article  Google Scholar 

  16. Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X.-A.; Hu, W. P.; Özyilmaz, B.; Neto, A. H. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.

    Article  Google Scholar 

  17. Kulish, V. V.; Malyi, O. I.; Persson, C.; Wu, P. Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 2015, 17, 992–1000.

    Article  Google Scholar 

  18. Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755.

    Article  Google Scholar 

  19. Fei, R. X.; Yang, L. Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 2014, 105, 083120.

    Article  Google Scholar 

  20. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

    Article  Google Scholar 

  21. Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. M.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853–859.

    Article  Google Scholar 

  22. Su, L. Q.; Zhang, Y. Temperature coefficients of phonon frequencies and thermal conductivity in thin black phosphorus layers. Appl. Phys. Lett. 2015, 107, 071905.

    Article  Google Scholar 

  23. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y.-W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/ angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    Article  Google Scholar 

  24. Late, D. J. Temperature dependent phonon shifts in few-layer black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 5857–5862.

    Article  Google Scholar 

  25. Late, D. J.; Maitra, U.; Panchakarla, L. S.; Waghmare, U. V.; Rao, C. N. R. Temperature effects on the Raman spectra of graphenes: Dependence on the number of layers and doping. J. Phys.: Condens. Mat. 2011, 23, 055303.

    Google Scholar 

  26. Lanzillo, N. A.; Birdwell, A. G.; Amani, M.; Crowne, F. J.; Shah, P. B.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. et al. Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 2013, 103, 093102.

    Article  Google Scholar 

  27. Late, D. J.; Shirodkar, S. N.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2. ChemPhysChem 2014, 15, 1592–1598.

    Article  Google Scholar 

  28. Zouboulis, E. S.; Grimsditch, M. Raman scattering in diamond up to 1900 K. Phys. Rev. B 1991, 43, 12490–12493.

    Article  Google Scholar 

  29. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condes. Mat. 2009, 21, 395502.

    Google Scholar 

  30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  31. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  32. Sui, X. L.; Si, C.; Shao, B.; Zou, X. L.; Wu, J.; Gu, B.-L.; Duan, W. H. Tunable magnetism in transition-metal-decorated phosphorene. J. Phys. Chem. C 2015, 119, 10059–10063.

    Article  Google Scholar 

  33. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838.

    Google Scholar 

  34. Gamoke, B.; Neff, D.; Simons, J. Nature of PObonds in phosphates. J. Phys. Chem. A 2009, 113, 5677–5684.

    Article  Google Scholar 

  35. Goodman, N. B.; Ley, L.; Bullett, D. W. Valence-band structures of phosphorus allotropes. Phys. Rev. B 1983, 27, 7440–7450.

    Article  Google Scholar 

  36. Harada, Y.; Murano, K.; Shirotani, I.; Takahashi, T.; Maruyama, Y. Electronic structure of black phosphorus studied by X-ray photoelectron spectroscopy. Solid State Commun. 1982, 44, 877–879.

    Article  Google Scholar 

  37. Rokugawa, H.; Adachi, S. Investigation of rapid thermally annealed gap(001) surfaces in vacuum. Surf. Interface Anal. 2010, 42, 88–94.

    Google Scholar 

  38. Millard, M. M.; Foy, C. D.; Coradetti, C. A.; Reinsel, M. D. X-ray photoelectron spectroscopy surface analysis of aluminum ion stress in barley roots. Plant Physiol. 1990, 93, 578–583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kah-Wee Ang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Kulish, V.V., Wu, P. et al. Anomalously enhanced thermal stability of phosphorene via metal adatom doping: An experimental and first-principles study. Nano Res. 9, 2687–2695 (2016). https://doi.org/10.1007/s12274-016-1156-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1156-0

Keywords

Navigation