Skip to main content
Log in

Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

RuCu nanocages and core–shell Cu@Ru nanocrystals with ultrathin Ru shells were first synthesized by a one-pot modified galvanic replacement reaction. The construction of bimetallic nanocrystals with fully exposed precious atoms and a high surface area effectively realizes the concept of high atom-efficiency. Compared with the monometallic Ru/C catalyst, both the RuCu nanocages and Cu@Ru core–shell catalysts supported on commercial carbon show superior catalytic performance for the regioselective hydrogenation of quinoline toward 1,2,3,4-tetrahydroquinoline. RuCu nanocages exhibit the highest activity, achieving up to 99.6% conversion of quinoline and 100% selectivity toward 1,2,3,4-tetrahydroquinoline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Y. E.; Wang, D. S.; Niu, Z. Q.; Chen, P. C.; Zhou, G.; Li, Y. D. A strategy for designing a concave Pt–Ni alloy through controllable chemical etching. Angew. Chem., Int. Ed. 2012, 51, 12524–12528.

    Google Scholar 

  2. Zhang, J. W.; Zhang, L.; Jia, Y. Y.; Chen, G. X.; Wang, X.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: The case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618–629.

    Article  Google Scholar 

  3. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

    Article  Google Scholar 

  4. Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

    Article  Google Scholar 

  5. Xu, Y.; Ruban, A. V.; Mavrikakis, M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc. 2004, 126, 4717–4725.

    Article  Google Scholar 

  6. Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed synthesis of atomeconomical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. J. Am. Chem. Soc. 2004, 126, 5026–5027.

    Article  Google Scholar 

  7. Ji, Y. J.; Wu, Y.; Zhao, G. F.; Wang, D. S.; Liu, L.; He, W.; Li, Y. D. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 2015, 8, 2706–2713.

    Article  Google Scholar 

  8. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

    Article  Google Scholar 

  9. Tang, W. J.; Henkelman, G. Charge redistribution in core–shell nanoparticles to promote oxygen reduction. J. Chem. Phys. 2009, 130, 194504.

    Article  Google Scholar 

  10. Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

    Article  Google Scholar 

  11. Shahane, S.; Louafi, F.; Moreau, J.; Hurvois, J.-P.; Renaud, J.-L.; van de Weghe, P.; Roisnel, T. Synthesis of alkaloids of Galipea officinalis by alkylation of an a-amino nitrile. Eur. J. Org. Chem. 2008, 2008, 4622–4631.

    Article  Google Scholar 

  12. Westaway, S. M.; Chung, Y.-K.; Davis, J. B.; Holland, V.; Jerman, J. C.; Medhurst, S. J.; Rami, H. K.; Stemp, G.; Stevens, A. J.; Thompson, M. et al. N-tetrahydroquinolinyl, N-quinolinyl and N-isoquinolinyl biaryl carboxamides as antagonists of TRPV1. Bioorg. Med. Chem. Lett. 2006, 16, 4533–4536.

    Article  Google Scholar 

  13. Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev. 2011, 111, 7157–7259.

    Article  Google Scholar 

  14. Pitts, M. R.; Harrison, J. R.; Moody, C. J. Indium metal as a reducing agent in organic synthesis. J. Chem. Soc., Perkin Trans. 1 2001, 955–977.

    Google Scholar 

  15. Ren, D.; He, L.; Yu, L.; Ding, R.-S.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592–17598.

    Article  Google Scholar 

  16. Ye, H. H.; Wang, Q. X.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y. Z.; Sun, Y. G.; Xia, X. H. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 2016, 16, 2812–2817.

    Article  Google Scholar 

  17. Wang, M. D.; Xie, F. Y.; Xie, W. G.; Zheng, S. Z.; Ke, N.; Chen, J.; Zhao, N.; Xu, J. B. Device lifetime improvement of polymer-based bulk heterojunction solar cells by incorporating copper oxide layer at al cathode. Appl. Phys. Lett. 2011, 98, 183304.

    Article  Google Scholar 

  18. Durap, F.; Zahmakiran, M.; Özkar, S. Water soluble lauratestabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime. Int. J. Hydrogen Energy 2009, 34, 7223–7230.

    Article  Google Scholar 

  19. Qadir, K.; Joo, S. H.; Mun, B. S.; Butcher, D. R.; Renzas, J. R.; Aksoy, F.; Liu, Z.; Somorjai, G. A.; Park, J. Y. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett. 2012, 12, 5761–5768.

    Article  Google Scholar 

  20. Huang, X. Q.; Chen, Y.; Chiu, C.-Y.; Zhang, H.; Xu, Y. X.; Duan, X. F.; Huang, Y. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to curu nanotubes. Nanoscale 2013, 5, 6284–6290.

    Article  Google Scholar 

  21. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  Google Scholar 

  22. Li, Y. J.; Huang, Y. Low-temperature, seed-mediated synthesis of monodispersed hyperbranched PtRu nanoparticles and their electrocatalytic activity in methanol oxidation. J. Mater. Chem. 2012, 22, 12461–12464.

    Article  Google Scholar 

  23. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  24. Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd-Ni core–shell nanoparticles as effective catalysts for the suzuki reaction. Nano Res. 2014, 7, 1337–1343.

    Article  Google Scholar 

  25. Mitsudome, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 2013, 15, 2636–2654.

    Article  Google Scholar 

  26. Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H. Z.; Biradar, A. V.; Peng, D.-L.; Zboril, R.; Varma, R. S. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc Rev. 2015, 44, 7540–7590.

    Article  Google Scholar 

  27. Liu, H.-L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

    Article  Google Scholar 

  28. Tao, F. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev. 2012, 41, 7977–7979.

    Article  Google Scholar 

  29. Chen, M. S.; Kumar, D.; Yi, C.-W.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293.

    Article  Google Scholar 

  30. Maroun, F.; Ozanam, F.; Magnussen, O. M.; Behm, R. J. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 2001, 293, 1811–1814.

    Article  Google Scholar 

  31. Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A: Chem. 1997, 115, 421–429.

    Article  Google Scholar 

  32. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  33. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  Google Scholar 

  34. Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

    Article  Google Scholar 

  35. Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.; Wang, J. X.; Hanson, J.; Adzic, R. R. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 2005, 109, 22701–22704.

    Article  Google Scholar 

  36. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.

    Article  Google Scholar 

  37. Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013, 46, 1795–1805.

    Article  Google Scholar 

  38. Jae, J.; Zheng, W. Q.; Karim, A. M.; Guo, W.; Lobo, R. F.; Vlachos, D. G. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran. ChemCatChem 2014, 6, 848–856.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Peng or Yadong Li.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yu, Z., Chen, Z. et al. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 9, 2632–2640 (2016). https://doi.org/10.1007/s12274-016-1150-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1150-6

Keywords

Navigation