Advertisement

Nano Research

, Volume 9, Issue 9, pp 2590–2597 | Cite as

Silk nanofibers as high efficient and lightweight air filter

  • Chunya Wang
  • Shuyi Wu
  • Muqiang Jian
  • Jiarong Xie
  • Luping Xu
  • Xudong Yang
  • Quanshui Zheng
  • Yingying ZhangEmail author
Research Article

Abstract

Silk is a widely available, edible, biocompatible, and environmentally sustainable natural material. Particulate matter (PM) pollution has drawn considerable attention because it is a serious threat to public health. Herein, we report a human-friendly silk nanofiber air filter, which exhibits superior filtration efficiency for both PM2.5 and submicron particles with obviously low pressure drop and low basis weight compared to typical commercial microfiber air filters. Additionally, other functions such as antibacterial activity could be easily integrated into the silk nanofiber air filters, enabling the fabrication of multifunctional air filters. All the above characteristics, combined with the natural abundance and biocompatibility of silk, suggest a great potential for the use of silk nanofibers as air filters, especially as comfortable and personal air purifiers.

Keywords

silk nanofibers air filtration PM2.5 submicron particles lightweight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1145_MOESM1_ESM.pdf (2.4 mb)
Supplementary material, approximately 2448 KB.

References

  1. [1]
    Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806.CrossRefGoogle Scholar
  2. [2]
    Pope, C. A., Dockery, D. W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742.CrossRefGoogle Scholar
  3. [3]
    Zanobetti, A.; Schwartz, J. The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environ. Health Perspect. 2009, 117, 898–903.CrossRefGoogle Scholar
  4. [4]
    Dominici, F.; Peng, R. D.; Bell, M. L.; Pham, L.; McDermott, A.; Zeger, S. L.; Samet, J. M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134.CrossRefGoogle Scholar
  5. [5]
    Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R.; Nel, A. E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794–1807.CrossRefGoogle Scholar
  6. [6]
    Wang, C.-S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17.Google Scholar
  7. [7]
    Li, P.; Wang, C. Y.; Zhang, Y. Y.; Wei, F. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes. Small 2014, 10, 4543–4561.CrossRefGoogle Scholar
  8. [8]
    Viswanathan, G.; Kane, D. B.; Lipowicz, P. J. High efficiency fine particulate filtration using carbon nanotube coatings. Adv. Mater. 2004, 16, 2045–2049.CrossRefGoogle Scholar
  9. [9]
    Park, S. J.; Lee, D. G. Performance improvement of micronsized fibrous metal filters by direct growth of carbon nanotubes. Carbon 2006, 44, 1930–1935.CrossRefGoogle Scholar
  10. [10]
    Halonen, N.; Rautio, A.; Leino, A. R.; Kyllönen, T.; Tóth, G.; Lappalainen, J.; Kordás, K.; Huuhtanen, M.; Keiski, R. L.; Sápi, A. et al. Three-dimensional carbon nanotube scaffolds as particulate filters and catalyst support membranes. ACS Nano 2010, 4, 2003–2008.CrossRefGoogle Scholar
  11. [11]
    Park, J. H.; Yoon, K. Y.; Na, H.; Kim, Y. S.; Hwang, J.; Kim, J.; Yoon, Y. H. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci. Total Environ. 2011, 409, 4132–4138.CrossRefGoogle Scholar
  12. [12]
    Li, P.; Zong, Y. C.; Zhang, Y. Y.; Yang, M. M.; Zhang, R. F.; Li, S. Q.; Wei, F. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of submicron aerosols and high water repellency. Nanoscale 2013, 5, 3367–3372.CrossRefGoogle Scholar
  13. [13]
    Yildiz, O.; Bradford, P. D. Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 2013, 64, 295–304.CrossRefGoogle Scholar
  14. [14]
    Li, P.; Wang, C. Y.; Li, Z.; Zong, Y. C.; Zhang, Y. Y.; Yang, X. D.; Li, S. Q.; Wei, F. Hierarchical carbonnanotube/ quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Adv. 2014, 4, 54115–54121.CrossRefGoogle Scholar
  15. [15]
    Wang, C. Y.; Li, P.; Zong, Y. C.; Zhang, Y. Y.; Li, S. Q.; Wei, F. A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon 2014, 79, 424–431.CrossRefGoogle Scholar
  16. [16]
    Zhou, X. Z.; Boey, F.; Zhang, H. Controlled growth of single-walled carbon nanotubes on patterned substrates. Chem. Soc. Rev. 2011, 40, 5221–5231.CrossRefGoogle Scholar
  17. [17]
    Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.CrossRefGoogle Scholar
  18. [18]
    Desai, K.; Kit, K.; Li, J. J.; Davidson, P. M.; Zivanovic, S.; Meyer, H. Nanofibrous chitosan non-wovens for filtration applications. Polymer 2009, 50, 3661–3669.CrossRefGoogle Scholar
  19. [19]
    Mao, X.; Si, Y.; Chen, Y. C.; Yang, L. P.; Zhao, F.; Ding, B.; Yu, J. Y. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2012, 2, 12216–12223.CrossRefGoogle Scholar
  20. [20]
    Li, D.; Xia, Y. N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.CrossRefGoogle Scholar
  21. [21]
    Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 2008, 1, 205–221.CrossRefGoogle Scholar
  22. [22]
    Tao, H.; Brenckle, M. A.; Yang, M. M.; Zhang, J. D.; Liu, M. K.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; Mcalpine, M. C.; Rogers, J. A. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 2012, 24, 1067–1072.CrossRefGoogle Scholar
  23. [23]
    Tao, H; Kaplan, D. L.; Omenetto, F. G. Silk materials—A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837.CrossRefGoogle Scholar
  24. [24]
    Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631.CrossRefGoogle Scholar
  25. [25]
    Sandra, P.; Oliveira, J. M.; Reis, R. L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater. 2015, 27, 1143–1169.CrossRefGoogle Scholar
  26. [26]
    Lang, G.; Jokisch, S.; Scheibel, T. Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J. Vis. Exp. 2013, DOI: 10.3791/50492.Google Scholar
  27. [27]
    Chen, C. Y. Filtration of aerosols by fibrous media. Chem. Rev. 1955, 55, 595–623.CrossRefGoogle Scholar
  28. [28]
    Gong, G. M.; Zhou, C.; Wu, J. T.; Jin, X.; Jiang, L. Nanofibrous adhesion: The twin of gecko adhesion. ACS Nano 2015, 9, 3721–3727.CrossRefGoogle Scholar
  29. [29]
    Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275.CrossRefGoogle Scholar
  30. [30]
    Quadros, M. E.; Marr, L. C. Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ. Sci. Technol. 2011, 45, 10713–10719.CrossRefGoogle Scholar
  31. [31]
    Cao, C.; Jiang, W. J.; Wang, B. Y.; Fang, J. H.; Lang, J. D.; Tian, G.; Jiang, J. K.; Zhu, T. F. Inhalable microorganisms in Beijing’s PM2. 5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507.CrossRefGoogle Scholar
  32. [32]
    Morone, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.CrossRefGoogle Scholar
  33. [33]
    Shi, Q.; Vitchuli, N.; Nowak, J.; Noar, J.; Caldwell, J. M.; Breidt, F.; Bourham, M.; Mccord, M.; Zhang, X. W. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem. 2011, 21, 10330–10335.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chunya Wang
    • 1
  • Shuyi Wu
    • 2
  • Muqiang Jian
    • 1
  • Jiarong Xie
    • 3
  • Luping Xu
    • 2
  • Xudong Yang
    • 2
    • 3
  • Quanshui Zheng
    • 2
  • Yingying Zhang
    • 1
    Email author
  1. 1.Department of Chemistry & Center for Nano and Micro MechanicsTsinghua UniversityBeijingChina
  2. 2.Department of Engineering Mechanics &Center for Nano and Micro MechanicsTsinghua UniversityBeijingChina
  3. 3.Department of Building ScienceTsinghua UniversityBeijingChina

Personalised recommendations