Skip to main content

Advertisement

Log in

Facile synthesis of wormlike quantum dots-encapsulated nanoparticles and their controlled surface functionalization for effective bioapplications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconductor quantum dots (QDs) are considered as ideal fluorescent probes owing to their intrinsic optical properties. It has been demonstrated that the size and shape of nanoparticles significantly influence their behaviors in biological systems. In particular, one-dimensional (1D) nanoparticles with larger aspect ratios are desirable for cellular uptake. Here, we explore a facile and green method to prepare novel 1D wormlike QDs@SiO2 nanoparticles with controlled aspect ratios, wherein multiple QDs are arranged in the centerline of the nanoparticles. Then, an excellent cationic gene carrier, ethanolamine-functionalized poly(glycidyl methacrylate) (denoted by BUCT-PGEA), was in-situ produced via atom transfer radical polymerization on the surface of the QDs@SiO2 nanoparticles to achieve stable surfaces (QDs@SiO2-PGEA) for effective bioapplications. We found that the wormlike QDs@SiO2-PGEA nanoparticles demonstrated much higher gene transfection performance than ordinary spherical counterparts. In addition, the wormlike nanoparticles with larger aspect ratio performed better than those with smaller ratio. Furthermore, the gene delivery processes including cell entry and plasmid DNA (pDNA) escape and transport were also tracked in real time by the QDs@SiO2-PGEA/pDNA complexes. This work realized the integration of efficient gene delivery and real-time imaging within one controlled 1D nanostructure. These constructs will likely provide useful information regarding the interaction of nanoparticles with biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Nanomaterials for theranostics: Recent advances and future challenges. Chem. Rev. 2015, 115, 327–394.

    Article  Google Scholar 

  2. Louie, A. Multimodality imaging probes: Design and challenges. Chem. Rev. 2010, 110, 3146–3195.

    Article  Google Scholar 

  3. Mattoussi, H.; Palui, G.; Na, H. B. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv. Drug Deliv. Rev. 2012, 64, 138–166.

    Article  Google Scholar 

  4. Knipe, J. M.; Peters, J. T.; Peppas, N. A. Theranostic agents for intracellular gene delivery with spatiotemporal imaging. Nano Today 2013, 8, 21–38.

    Article  Google Scholar 

  5. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  Google Scholar 

  6. Tsoi, K. M.; Dai, Q.; Alman, B. A.; Chan, W. C. W. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 2013, 46, 662–671.

    Article  Google Scholar 

  7. Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

    Article  Google Scholar 

  8. Bardi, G.; Malvindi, M. A.; Gherardini, L.; Costa, M.; Pompa, P. P.; Cingolani, R.; Pizzorusso, T. The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 2010, 31, 6555–6566.

    Article  Google Scholar 

  9. Wei, W.; He, X. W.; Ma, N. DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells. Angew. Chem., Int. Ed. 2014, 126, 5679–5683.

    Article  Google Scholar 

  10. Lee, P. W.; Hsu, S. H.; Tsai, J. S.; Chen, F. R.; Huang, P. J.; Ke, C. J.; Liao, Z. X.; Hsiao, C. W.; Lin, H. J.; Sung, H. W. Multifunctional core–shell polymeric nanoparticles for transdermal DNA delivery and epidermal langerhans cells tracking. Biomaterials 2010, 31, 2425–2434.

    Article  Google Scholar 

  11. Hu, X. G.; Gao, X. H. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano 2010, 4, 6080–6086.

    Article  Google Scholar 

  12. Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    Article  Google Scholar 

  13. Zhang, L. Y.; Bceton, M.; Wang, X. Q. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings. J. Phys. Chem. B 2015, 119, 3786–3794.

    Article  Google Scholar 

  14. Lin, X. Y.; Zhao, N. N.; Yan, P.; Hu, H.; Xu, F. J. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta Biomater. 2015, 11, 381–392.

    Article  Google Scholar 

  15. Yan, P.; Wang, R. R.; Zhao, N. N.; Zhao, H.; Chen, D. F.; Xu, F. J. Polycation-functionalized gold nanoparticles with different morphologies for superior gene transfection. Nanoscale 2015, 7, 5281–5291.

    Article  Google Scholar 

  16. Meng, H.; Yang, S.; Li, Z. X.; Xia, T.; Chen, J.; Ji, Z. X.; Zhang, H. Y.; Wang, X.; Lin, S. J.; Huang, C. et al. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 2011, 5, 4434–4447.

    Article  Google Scholar 

  17. Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448.

    Article  Google Scholar 

  18. Yang, Y. H.; Gao, M. Y. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv. Mater. 2005, 17, 2354–2357.

    Article  Google Scholar 

  19. Foda, M. F.; Huang, L.; Shao, F.; Han, H. Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 2011–2017.

    Article  Google Scholar 

  20. Zhao, B. X.; Yao, Y. L.; Gao, M. Y.; Sun, K.; Zhang, J. H.; Li, W. W. Doped quantum dot@silica nanocomposites for white light-emitting diodes. Nanoscale 2015, 7, 17231–17236.

    Article  Google Scholar 

  21. Yang, P.; Ando, M.; Taguchi, T.; Murase, N. Encapsulation of multiple QDs into SiO2 beads by reflux without degrading initial photoluminescence properties. J. Phys. Chem. C 2010, 114, 20962–20967.

    Article  Google Scholar 

  22. Koole, R.; van Schooneveld, M. M.; Hilhorst, J.; de Mello Donegá, C.; ’t Hart, D. C.; van Blaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 2008, 20, 2503–2512.

    Article  Google Scholar 

  23. Yang, P.; Murase, N.; Suzuki, M.; Hosokawa, C.; Kawasaki, K.; Kato, T.; Taguch, T. Bright, non-blinking, and lesscytotoxic SiO2 beads with multiple CdSe/ZnS nanocrystals. Chem. Commun. 2010, 46, 4595–4597.

    Article  Google Scholar 

  24. Tian, H. Y.; Chen, J.; Chen X. S. Nanoparticles for gene delivery. Small 2013, 9, 2034–2044.

    Article  Google Scholar 

  25. Park, J.; Lee, J.; Kwag, J.; Baek, Y.; Kim, B.; Yoon, C. J.; Bok, S.; Cho, S. H.; Kim, K. H.; Ahn, G. O. et al. Quantum dots in an amphiphilic polyethyleneimine derivative platform for cellular labeling, targeting, gene delivery, and ratiometric oxygen sensing. ACS Nano 2015, 9, 6511–6521.

    Article  Google Scholar 

  26. Zhang, P.; Liu, W. G. ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials 2010, 31, 3087–3094.

    Article  Google Scholar 

  27. Qi, L. F.; Gao, X. H. Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2008, 2, 1403–1410.

    Article  Google Scholar 

  28. Jung, J.; Solanki, A.; Memoli, K. A.; Kamei, K.; Kim, H.; Drahl, M. A.; Williams, L. J.; Tseng, H. R.; Lee, K. Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery. Angew. Chem., Int. Ed. 2010, 122, 107–111.

    Article  Google Scholar 

  29. Li, J. M.; Zhao, M. X.; Su, H.; Wang, Y. Y.; Tan, C. P.; Ji, L. N.; Mao, Z. W. Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 2011, 32, 7978–7987.

    Article  Google Scholar 

  30. Xu, F. J.; Chai, M. Y.; Li, W. B.; Ping, Y.; Tang, G. P.; Yang, W. T.; Ma, J.; Liu, F. S. Well-defined poly(2-hydroxyl-3-(2-hydroxyethylamino)propyl methacrylate) vectors with low toxicity and high gene transfection efficiency. Biomacromolecules 2010, 11, 1437–1442.

    Article  Google Scholar 

  31. Zhao, N. N.; Lin, X. Y.; Zhang, Q.; Ji, Z. X.; Xu, F. J. Redox-triggered gatekeeper-enveloped starlike hollow silica nanoparticles for intelligent delivery systems. Small 2015, 11, 6467–6479.

    Article  Google Scholar 

  32. Li, W. W.; Liu, J.; Sun, K.; Dou, H. J.; Tao, K. Highly fluorescent water soluble CdxZn1‒x Te alloyed quantum dots prepared in aqueous solution: One-step synthesis and the alloy effect of Zn. J. Mater. Chem. 2010, 20, 2133–2138.

    Article  Google Scholar 

  33. Zhu, M.; Peng, X. Q.; Wang, Z. W.; Bai, Z. L.; Chen, B. K.; Wang, Y. T.; Hao, H. Y.; Shao, Z. Q.; Zhong, H. H. Highly transparent and colour-tunable composite films with increased quantum dot loading. J. Mater. Chem. C 2014, 2, 10031–10036.

    Article  Google Scholar 

  34. Song, H. Q.; Dou, X. B.; Li, R. Q.; Yu, B. R.; Zhao, N. N.; Xu, F. J. A general strategy to prepare different types of polysaccharide-graft-poly(aspartic acid) as degradable gene carriers. Acta Biomater. 2015, 12, 156–165.

    Article  Google Scholar 

  35. Hu, Y.; Yuan, W.; Zhao, N. N.; Ma, J.; Yang, W. T.; Xu, F. J. Supramolecular pseudo-block gene carriers based on bioreducible star polycations. Biomaterials 2013, 34, 5411–5422.

    Article  Google Scholar 

  36. Xu, F. J.; Yang, X. C.; Li, C. Y.; Yang, W. T. Functionalized polylactide film surfaces via surface-initiated ATRP. Macromolecules 2011, 44, 2371–2377.

    Article  Google Scholar 

  37. Klokkenburg, M.; Houtepen, A. J.; Koole, R.; de Folter, J. W. J.; Erné, B. H.; van Faassen, E.; Vanmaekelbergh, D. Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots. Nano Lett. 2007, 7, 2931–2936.

    Article  Google Scholar 

  38. Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

    Article  Google Scholar 

  39. Wang, Y.; Tang, Z. Y. Correa-Duart, M. A.; Pastoriza-Santos, I.; Giersig, M.; Kotov, N. A.; Liz-Marzán, L. M. Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. J. Phys. Chem. B 2004, 108, 15461–15469.

    Article  Google Scholar 

  40. Kang, Y.; Zhou, L. L.; Li, X.; Yuan, J. Y. β-Cyclodextrinmodified hybrid magnetic nanoparticles for catalysis and adsorption. J. Mater. Chem. 2011, 21, 3704–3710.

    Article  Google Scholar 

  41. Xiang, S. N.; Tong, H. J.; Shi, Q.; Fernandes, J. C.; Jin, T.; Dai, K. R.; Zhang, X. L. Uptake mechanisms of non-viral gene delivery. J. Control. Release 2012, 158, 371–378.

    Article  Google Scholar 

  42. Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; Desimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nana Zhao or Fujian Xu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Qi, Y., Zhu, M. et al. Facile synthesis of wormlike quantum dots-encapsulated nanoparticles and their controlled surface functionalization for effective bioapplications. Nano Res. 9, 2531–2543 (2016). https://doi.org/10.1007/s12274-016-1139-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1139-1

Keywords

Navigation