Skip to main content
Log in

Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the present work, nanofibrous chitin microsphere (NCM) was prepared via sol–gel transition from a chitin solution dissolved in a NaOH/urea aqueous system at low temperatures. Ag nanoparticles (AgNPs) were synthesized via an in situ reduction of silver nitrate using trisodium citrate dehydrate and were immobilized on chitin nanofibers to obtain composite microspheres that consist of nanofibers and AgNPs (NCM-Ag). The size of AgNPs could be controlled in the range of 10 to 70 nm, depending on the concentration of AgNO3. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analyses showed that the chitin nanofibers have a strong affinity toward AgNPs, resulting from the interaction between the acetamino group of chitin and the AgNPs. The NCM-Ag exhibited a perfect nanoporous structure and high surface area, as well as high stability in organic solvents. Moreover, in the catalytic epoxidation of olefin (particularly, the conversion of styrene to styrene epoxide), NCM-Ag exhibited an excellent selectivity of up to 90%. Converting chitin powder into chitin microspheres using an environmentally friendly technique is a green process, which is beneficial for the large-scale synthesis of industrial products. More importantly, this work provides a green synthetic pathway for the construction of size-controlled noble metal nanoparticles immobilized on nanofiber support, which have a wide range of potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, X. Y.; Long, R.; Liu, D.; Luo, B. B.; Xiong, Y. J. Pd–Ag alloy nanocages: Integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. J. Mater. Chem. A 2015, 3, 9390–9394.

    Article  Google Scholar 

  2. Le Guével, X.; Perez Perrino, M.; Fernández, T. D.; Palomares, F.; Torres, M.-J.; Blanca, M.; Rojo, J.; Mayorga, C. Multivalent glycosylation of fluorescent gold nanoclusters promotes increased human dendritic cell targeting via multiple endocytic pathways. ACS Appl. Mater. Interfaces 2015, 7, 20945–20956.

    Article  Google Scholar 

  3. Tai, Y.-L.; Yang, Z.-G. Facile and scalable preparation of solid silver nanoparticles (<10 nm) for flexible electronics. ACS Appl. Mater. Interfaces 2015, 7, 17104–117111.

    Article  Google Scholar 

  4. Cunningham, J. C.; Kogan, M. R.; Tsai, Y.-J.; Luo, L.; Richards, I.; Crooks, R. M. Paper-based sensor for electrochemical detection of silver nanoparticle labels by galvanic exchange. ACS Sens. 2016, 1, 40–47.

    Article  Google Scholar 

  5. Li, B.; Ye, S. R.; Stewart, I. E.; Alvarez, S.; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 2015, 15, 6722–6726.

    Article  Google Scholar 

  6. Liang, M.; Su, R. X.; Huang, R. L.; Qi, W.; Yu, Y. J.; Wang, L. B.; He, Z. M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 4638–4649.

    Article  Google Scholar 

  7. Annur, D.; Wang, Z.-K.; Liao, J.-D.; Kuo, C. Plasmasynthesized silver nanoparticles on electrospun chitosan nanofiber surfaces for antibacterial applications. Biomacromolecules 2015, 16, 3248–3255.

    Article  Google Scholar 

  8. Cao, Q.; Yuan, K. P.; Liu, Q. H.; Liang, C. Y.; Wang, X.; Cheng, Y.-F.; Li, Q. Q.; Wang, M.; Che, R. C. Porous Au–Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring. ACS Appl. Mater. Interfaces 2015, 7, 18491–18500.

    Article  Google Scholar 

  9. Anandhakumar, S.; Sasidharan, M.; Tsao, C.-W.; Raichur, A. M. Tailor-made hollow silver nanoparticle cages assembled with silver nanoparticles: An efficient catalyst for epoxidation. ACS Appl. Mater. Interfaces 2014, 6, 3275–3281.

    Article  Google Scholar 

  10. Ghosh, S.; Acharyya, S. S.; Tripathi, D.; Bal, R. Preparation of silver-tungsten nanostructure materials for selective oxidation of toluene to benzaldehyde with hydrogen peroxide. J. Mater. Chem. A 2014, 2, 15726–15733.

    Article  Google Scholar 

  11. Li, S.-J.; Ping, Y.; Yan, J.-M.; Wang, H.-L.; Wu, M.; Jiang, Q. Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid. J. Mater. Chem. A 2015, 3, 14535–14538.

    Article  Google Scholar 

  12. Aouf, C.; Durand, E.; Lecomte, J.; Figueroa-Espinoza, M.-C.; Dubreucq, E.; Fulcrand, H.; Villeneuve, P. The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chem. 2014, 16, 1740–1754.

    Article  Google Scholar 

  13. Zhu, Y. G.; Wang, Q.; Cornwall, R. G.; Shi, Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem. Rev. 2014, 114, 8199–8256.

    Article  Google Scholar 

  14. Ovoshchnikov, D. S.; Donoeva, B. G.; Williamson, B. E.; Golovko, V. B. Tuning the selectivity of a supported gold catalyst in solvent- and radical initiator-free aerobic oxidation of cyclohexene. Catal. Sci. Technol. 2014, 4, 752–757.

    Article  Google Scholar 

  15. Bhunia, S.; Jana, S.; Saha, D.; Dutta, B.; Koner, S. Catalytic olefin epoxidation over cobalt(II)-containing mesoporous silica by molecular oxygen in dimethylformamide medium. Catal. Sci. Technol. 2014, 4, 1820–1828.

    Article  Google Scholar 

  16. Ottenbacher, R. V.; Samsonenko, D. G.; Talsi, E. P.; Bryliakov, K. P. Highly enantioselective bioinspired epoxidation of electron-deficient olefins with H2O2 on aminopyridine Mn catalysts. ACS Catal. 2014, 4, 1599–1606.

    Article  Google Scholar 

  17. Crites, C.-O. L.; Hallet-Tapley, G. L.; González-Béjar, M.; Netto-Ferreira, J. C.; Scaiano, J. C. Epoxidation of stilbene using supported gold nanoparticles: Cumyl peroxyl radical activation at the gold nanoparticle surface. Chem. Commun. 2014, 50, 2289–2291.

    Article  Google Scholar 

  18. Chandra, P.; Doke, D. S.; Umbarkar, S. B.; Biradar, A. V. One-pot synthesis of ultrasmall MoO3 nanoparticles supported on SiO2, TiO2, and ZrO2 nanospheres: An efficient epoxidation catalyst. J. Mater. Chem. A 2014, 2, 19060–19066.

    Article  Google Scholar 

  19. Yan, W. J.; Ramanathan, A.; Ghanta, M.; Subramaniam, B. Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten- or niobium-incorporated mesoporous silicate (KIT-6). Catal. Sci. Technol. 2014, 4, 4433–4439.

    Article  Google Scholar 

  20. Markovits, I. I. E.; Anthofer, M. H.; Kolding, H.; Cokoja, M.; Pothig, A.; Raba, A.; Herrmann, W. A.; Fehrmann, R.; Kühn, F. E. Efficient epoxidation of propene using molecular catalysts. Catal. Sci. Technol. 2014, 4, 3845–3849.

    Article  Google Scholar 

  21. Christopher, P.; Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc. 2008, 130, 11264–11265.

    Article  Google Scholar 

  22. Zhang, J. Y.; Xiao, F.-X.; Xiao, G. C.; Liu, B. Selfassembly of a Ag nanoparticle-modified and graphenewrapped TiO2 nanobelt ternary heterostructure: Surface charge tuning toward efficient photocatalysis. Nanoscale 2014, 6, 11293–11302.

    Article  Google Scholar 

  23. Shen, Z. G.; Luo, Y. Q.; Wang, Q.; Wang, X. Y.; Sun, R. C. High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+. ACS Appl. Mater. Interfaces 2014, 6, 16147–16155.

    Article  Google Scholar 

  24. Radziuk, D.; Shchukin, D.; Möhwald, H. Sonochemical design of engineered gold-silver nanoparticles. J. Phys. Chem. C 2008, 112, 2462–2468.

    Article  Google Scholar 

  25. Erwin, W. R.; Coppola, A.; Zarick, H. F.; Arora, P.; Miller, K. J.; Bardhan, R. Plasmon enhanced water splitting mediated by hybrid bimetallic Au–Ag core–shell nanostructures. Nanoscale 2014, 6, 12626–12634.

    Article  Google Scholar 

  26. Sharma, M.; Pudasaini, P. R.; Ruiz-Zepeda, F.; Vinogradova, E.; Ayon, A. A. Plasmonic effects of Au/Ag bimetallic multispiked nanoparticles for photovoltaic applications. ACS Appl. Mater. Interfaces 2014, 6, 15472–15479.

    Google Scholar 

  27. Fageria, P.; Gangopadhyay, S.; Pande, S. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 2014, 4, 24962–24972.

    Article  Google Scholar 

  28. Cheng, F.; Betts, J. W.; Kelly, S. M.; Schaller, J.; Heinze, T. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem. 2013, 15, 989–998.

    Article  Google Scholar 

  29. Garcia-Reyero, N.; Kennedy, A. J.; Escalon, B. L.; Habib, T.; Laird, J. G.; Rawat, A.; Wiseman, S.; Hecker, M.; Denslow, N.; Steevens, J. A. et al. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ. Sci. Technol. 2014, 48, 4546–4555.

    Article  Google Scholar 

  30. Ashraf, S.; Saif-ur-Rehman.; Sher, F.; Khalid, Z. M.; Mehmood, M.; Hussain, I. Synthesis of cellulose–metal nanoparticle composites: Development and comparison of different protocols. Cellulose 2014, 21, 395–405.

    Article  Google Scholar 

  31. Martin, M. N.; Allen, A. J.; MacCuspie, R. I.; Hackley, V. A. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir 2014, 30, 11442–11452.

    Article  Google Scholar 

  32. Tang, B.; Li, J. L.; Hou, X. L.; Afrin, T.; Sun, L.; Wang, X. G. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 4556–4563.

    Article  Google Scholar 

  33. Ai, L. H.; Yue, H. T.; Jiang, J. Environmentally friendly light-driven synthesis of Ag nanoparticles in situ grown on magnetically separable biohydrogels as highly active and recyclable catalysts for 4-nitrophenol reduction. J. Mater. Chem. 2012, 22, 23447–23453.

    Article  Google Scholar 

  34. Cai, J.; Kimura, S.; Wada, M.; Kuga, S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 2009, 10, 87–94.

    Article  Google Scholar 

  35. Dong, B. H.; Hinestroza, J. P. Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and in situ synthesis. ACS Appl. Mater. Interfaces 2009, 1, 797–803.

    Article  Google Scholar 

  36. Fang, Y.; Duan, B.; Lu, A.; Liu, M. L.; Liu, H. L.; Xu, X. J.; Zhang, L. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410–1417.

    Article  Google Scholar 

  37. Duan, B.; Chang, C. Y.; Ding, B. B.; Cai, J.; Xu, M.; Feng, S. C.; Ren, J. Z.; Shi, X. W.; Du, Y. M.; Zhang, L. High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. J. Mater. Chem. A 2013, 1, 1867–1874.

    Article  Google Scholar 

  38. Chang, C. Y.; Chen, S.; Zhang, L. Novel hydrogels prepared via direct dissolution of chitin at low temperature: Structure and biocompatibility. J. Mater. Chem. 2011, 21, 3865–3871.

    Article  Google Scholar 

  39. Ding, B. B.; Cai, J.; Huang, J. C.; Zhang, L.; Chen, Y.; Shi, X. W.; Du, Y. M.; Kuga, S. Facile preparation of robust and biocompatible chitin aerogels. J. Mater. Chem. 2012, 22, 5801–5809.

    Article  Google Scholar 

  40. Duan, B.; Liu, F.; He, M.; Zhang, L. Ag–Fe3O4 nanocomposites@ chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem. 2014, 16, 2835–2845.

    Article  Google Scholar 

  41. Tang, H.; Chang, C. Y.; Zhang, L. Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. Chem. Eng. J. 2011, 173, 689–697.

    Article  Google Scholar 

  42. Duan, B.; Zheng, X.; Xia, Z. X.; Fan, X. L.; Guo, L.; Liu, J. F.; Wang, Y. F.; Ye, Q. F.; Zhang, L. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem., Int. Ed. 2015, 54, 5152–5156.

    Article  Google Scholar 

  43. Zhang, D.-H.; Li, H.-B.; Li, G.-D.; Chen, J.-S. Magnetically recyclable Ag-ferrite catalysts: General synthesis and support effects in the epoxidation of styrene. Dalton Trans. 2009, 10527–10533.

    Google Scholar 

  44. Duan, J. Q.; He, X. M.; Zhang, L. Magnetic cellulose-TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem. Commun. 2015, 51, 338–341.

    Article  Google Scholar 

  45. Ding, F. Y.; Shi, X. W.; Jiang, Z. W.; Liu, L.; Cai, J.; Li, Z. Y.; Chen, S.; Du, Y. M. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J. Mater. Chem. B 2013, 1, 1729–1737.

    Article  Google Scholar 

  46. Ifuku, S.; Morooka, S.; Morimoto, M.; Saimoto, H. Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 2010, 11, 1326–1330.

    Article  Google Scholar 

  47. Xiong, R.; Lu, C. H.; Wang, Y. R.; Zhou, Z. H.; Zhang, X. X. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J. Mater. Chem. A 2013, 1, 14910–14918.

    Article  Google Scholar 

  48. Zhang, L.; Shen, Y. H.; Xie, A. J.; Li, S. K.; Li, Y. M. Layer-by-layer assembly of chitosan/tungstosilicate acid-Ag nanocomplex with electrocatalytic properties. J. Mater. Chem. 2009, 19, 1884–1893.

    Article  Google Scholar 

  49. Ferraria, A. M.; Boufi, S.; Battaglini, N.; Botelho do Rego, A. M.; ReiVilar, M. Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 2010, 26, 1996–2001.

    Article  Google Scholar 

  50. Kangwansupamonkon, W.; Tiewtrakoonwat, W.; Supaphol, P.; Kiatkamjornwong, S. Surface modification of electrospun chitosan nanofibrous mats for antibacterial activity. J. Appl. Poly. Sci. 2014, 131, 40981.

    Article  Google Scholar 

  51. Pradal, C.; Kithva, P.; Martin, D.; Trau, M.; Grondahl, L. Improvement of the wet tensile properties of nanostructured hydroxyapatite and chitosan biocomposite films through hydrophobic modification. J. Mater. Chem. 2011, 21, 2330–2337.

    Article  Google Scholar 

  52. Roy, P. S.; Samanta, A.; Mukherjee, M.; Roy, B.; Mukherjee, A. Designing novel pH-induced chitosan–gum odina complex coacervates for colon targeting. Ind. Eng. Chem. Res. 2013, 52, 15728–15745.

    Article  Google Scholar 

  53. Zuo, X. J. Preparation and evaluation of novel thiourea/chitosan composite beads for copper(II) removal in aqueous solutions. Ind. Eng. Chem. Res. 2014, 53, 1249–1255.

    Article  Google Scholar 

  54. Jiang, W.; Wang, W. F.; Pan, B. C.; Zhang, Q. X.; Zhang, W. M.; Lv, L. Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl. Mater. Interfaces 2014, 6, 3421–3426.

    Article  Google Scholar 

  55. Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/κ-carrageenan multilayers. Biomacromolecules 2007, 8, 2960–2968.

    Article  Google Scholar 

  56. Lundin, A.; Panas, I.; Ahlberg, E. Quantum chemical modeling of propene and butene epoxidation with hydrogen peroxide. J. Phys. Chem. A 2009, 113, 282–290.

    Article  Google Scholar 

  57. Ghosh, S.; Acharyya, S. S.; Tiwari, R.; Sarkar, B.; Singha, R. K.; Pendem, C.; Ssakt, T.; Bal, R. Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen. ACS. Catal. 2014, 4, 2169–2174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Duan, B. & Zhang, L. Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Res. 9, 2149–2161 (2016). https://doi.org/10.1007/s12274-016-1104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1104-z

Keywords

Navigation