Skip to main content
Log in

Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The present work reports a sensitive and selective fluorescent sensor for the detection of mercury ion, Hg(II), by hybridizing carbon nanodots (C-dots) and gold nanoclusters (Au NCs) through intrinsic interactions of the two components. The C-dots serve as the reference signal and the Au NCs as the reporter. This method employs the specific high affinity metallophilic Hg2+–Au+ interactions which can greatly quench the red fluorescence of Au NCs, while the blue fluorescence of C-dots is stable against Hg(II), leading to distinct ratiometric fluorescence changes when exposed to Hg(II). A limit of detection of 28 nM for Hg(II) in aqueous solution was estimated. Thus we applied the sensor for the detection of Hg(II) in real water samples including tap water, lake water and mineral water samples with good results. We further demonstrated that a visual chemical sensor could be manufactured by immobilizing the nanohybrid probe on a cellulose acetate circular filter paper. The paper-based sensor immediately showed a distinct fluorescence color evolution from pink to blue after exposure to a drop of the Hg(II) solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nolan, E. M.; Lippard, S. J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443–3480.

    Article  Google Scholar 

  2. Balaji, T.; El-Safty, S. A.; Matsunaga, H.; Hanaoka, T.; Mizukami, F. Optical sensors based on nanostructured cage materials for the detection of toxic metal ions. Angew. Chem., Int. Ed. 2006, 45, 7202–7208.

    Article  Google Scholar 

  3. Kozikowska, I.; Binkowski, L. J.; Szczepanska, K.; Slawska, H.; Miszczuk, K.; Sliwinska, M.; Laciak, T.; Stawarz, R. Mercury concentrations in human placenta, umbilical cord, cord blood and amniotic fluid and their relations with body parameters of newborns. Environ. Pollut. 2013, 182, 256–262.

    Article  Google Scholar 

  4. Voegborlo, R. B.; Akagi, H. Determination of mercury in fish by cold vapour atomic absorption spectrometry using an automatic mercury analyzer. Food Chem. 2007, 100, 853–858.

    Article  Google Scholar 

  5. Tao, S. Q.; Gong, S. F.; Xu, L.; Fanguy, J. C. Mercury atomic absorption by mercury atoms in water observed with a liquid core waveguide as a long path absorption cell. Analyst 2004, 129, 342–346.

    Article  Google Scholar 

  6. O’Neil, G. D.; Newton, M. E.; Macpherson, J. V. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence. Anal. Chem. 2015, 87, 4933–4940.

    Article  Google Scholar 

  7. Ohata, M.; Kidokoro, T. Effect of long-time X-ray irradiation on Cr and Hg in a polypropylene disk certified reference material observed during measurements by X-ray fluorescence spectrometry. Anal. Sci. 2015, 31, 855–858.

    Article  Google Scholar 

  8. Lv, J. T.; Luo, L.; Zhang, J.; Christie, P.; Zhang, S. Z. Adsorption of mercury on lignin: Combined surface complexation modeling and X-ray absorption spectroscopy studies. Environ. Pollut. 2012, 162, 255–261.

    Article  Google Scholar 

  9. Wan, C. C.; Chen, C. S.; Jiang, S. J. Determination of mercury compounds in water samples by liquid chromatography–inductively coupled plasma mass spectrometry with an in situ nebulizer/vapor generator. J. Anal. At. Spectrom. 1997, 12, 683–687.

    Article  Google Scholar 

  10. Li, B. H. Rapid speciation analysis of mercury by short column capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry. Anal. Methods 2011, 3, 116–121.

    Article  Google Scholar 

  11. Lamble, K. J.; Hill, S. J. Determination of mercury in slurried samples by both batch and on-line microwave digestion-cold vapour atomic fluorescence spectrometry. J. Anal. At. Spectrom. 1996, 11, 1099–1103.

    Article  Google Scholar 

  12. Soomro, R. A.; Nafady, A.; Sirajuddin; Memon, N.; Sherazi, T. H.; Kalwar, N. H. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta 2014, 130, 415–422.

    Article  Google Scholar 

  13. Liu, D. B.; Qu, W. S.; Chen, W. W.; Zhang, W.; Wang, Z.; Jiang, X. Y. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal. Chem. 2010, 82, 9606–9610.

    Article  Google Scholar 

  14. Kiatkumjorn, T.; Rattanarat, P.; Siangproh, W.; Chailapakul, O.; Praphairaksit, N. Glutathione and L-cysteine modified silver nanoplates-based colorimetric assay for a simple, fast, sensitive and selective determination of nickel. Talanta 2014, 128, 215–220.

    Article  Google Scholar 

  15. Zhu, Z. Q.; Su, Y. Y.; Li, J.; Li, D.; Zhang, J.; Song, S. P.; Zhao, Y.; Li, G. X.; Fan, C. H. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercuryspecific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 2009, 81, 7660–7666.

    Article  Google Scholar 

  16. Tang, S. R.; Tong, P.; Lu, W.; Chen, J. F.; Yan, Z. M.; Zhang, L. A novel label-free electrochemical sensor for Hg2+ based on the catalytic formation of metal nanoparticle. Biosens. Bioelectron. 2014, 59, 1–5.

    Article  Google Scholar 

  17. Bhowmick, R.; Alam, R.; Mistri, T.; Bhattacharya, D.; Karmakar, P.; Ali, M. Morphology-directing synthesis of rhodamine-based fluorophore microstructures and application toward extra- and intracellular detection of Hg2+. ACS Appl. Mater. Interfaces 2015, 7, 7476–7485.

    Article  Google Scholar 

  18. Yuan, Y.; Jiang, S. L.; Miao, Q. Q.; Zhang, J.; Wang, M. J.; An, L. N.; Cao, Q. W.; Guan, Y. F.; Zhang, Q.; Liang, G. L. Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and a simple device for its removal. Talanta 2014, 125, 204–209.

    Article  Google Scholar 

  19. Chen, T. H.; Lu, C. Y.; Tseng, W. L. One-pot synthesis of two-sized clusters for ratiometric sensing of Hg2+. Talanta 2013, 117, 258–262.

    Article  Google Scholar 

  20. Lu, D. T.; Zhang, C. H.; Fan, L.; Wu, H. J.; Shuang, S. M.; Dong, C. A novel ratiometric fluorescence probe based on BSA assembled silver nanoclusters for mercuric ion selective sensing. Anal. Methods 2013, 5, 5522–5527.

    Article  Google Scholar 

  21. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem. Commun. 2010, 46, 961–963.

    Article  Google Scholar 

  22. Bian, P. P.; Xing, L. W.; Liu, Z. M.; Ma, Z. F. Functionalizedtryptophan stabilized fluorescent Ag nanoclusters: Synthesis and its application as Hg2+ ions sensor. Sens. Actuators B 2014, 203, 252–257.

    Article  Google Scholar 

  23. Guo, C. L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem. 2011, 83, 2883–2889.

    Article  Google Scholar 

  24. Duan, J. L.; Song, L. X.; Zhan, J. H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009, 2, 61–68.

    Article  Google Scholar 

  25. Xu, H.; Yang, X. P.; Li, G.; Zhao, C.; Liao, X. J. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J. Agric. Food Chem. 2015, 63, 6707–6714.

    Article  Google Scholar 

  26. Hsu, P. C.; Chang, H. T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups. Chem. Commun. 2012, 48, 3984–3986.

    Article  Google Scholar 

  27. Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

    Article  Google Scholar 

  28. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

    Article  Google Scholar 

  29. Wen, F.; Dong, Y. H.; Feng, L.; Wang, S.; Zhang, S. C.; Zhang, X. R. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 2011, 83, 1193–1196.

    Article  Google Scholar 

  30. Chen, P. C.; Chiang, C. K.; Chang, H. T. Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 2013, 15, 1336.

    Article  Google Scholar 

  31. Shang, L.; Yang, L. X.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Microwaveassisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4, 4155–4160.

    Article  Google Scholar 

  32. Zhang, X. L.; Xiao, Y.; Qian, X. H. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew. Chem., Int. Ed. 2008, 47, 8025–8029.

    Article  Google Scholar 

  33. Zhang, K.; Zhou, H. B.; Mei, Q. S.; Wang, S. H.; Guan, G. J.; Liu, R. Y.; Zhang, J.; Zhang, Z. P. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc. 2011, 133, 8424–8427.

    Article  Google Scholar 

  34. Yu, C. M.; Li, X. Z.; Zeng, F.; Zheng, F. Y.; Wu, S. Z. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun. 2013, 49, 403–405.

    Article  Google Scholar 

  35. Cao, B. M.; Yuan, C.; Liu, B. H.; Jiang, C. L.; Guan, G. J.; Han, M. Y. Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots. Anal. Chim. Acta 2013, 786, 146–152.

    Article  Google Scholar 

  36. Schroetter-Dirks, S.; Bougeard, D. Vibrational spectra of tris(hydroxymethyl)aminomethane hydrogenhalides TRISH+X-, (HOH2C)3C–NH3 +·X- (X = F, Cl, Br, I). J. Mol. Struct. 2003, 661–662, 109–119.

    Article  Google Scholar 

  37. Kumar, S.; Rai, A. K.; Singh, V. B.; Rai, S. B. Vibrational spectrum of glycine molecule. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2741–2746.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhua Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Yu, H., Zhang, K. et al. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 9, 2088–2096 (2016). https://doi.org/10.1007/s12274-016-1099-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1099-5

Keywords

Navigation