Skip to main content
Log in

Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A symmetrical Fe2O3/BaCO3 hexagonal cone structure having a height of 10 μm and an edge length of ~4 μm is reported, obtained using a common solvothermal process and a mirror growth process. Focused ion beam and high-resolution transmission electron microscopy techniques revealed that α-Fe2O3 was the single crystal feature present. Ba ions contributed to the formation of symmetrical structures exhibited in the final composites. Subsequently, porous magnetic symmetric hexagonal cone structures were used to study the observed intense electromagnetic wave interference. Electromagnetic absorption performance studies at 2–18 GHz indicated stronger attenuation electromagnetic wave ability as compared to other shapes such as spindles, spheres, cubes, and rods. The maximum absorption frequency bandwidth was at 7.2 GHz with a coating thickness d = 1.5 mm. Special structures and the absence of BaCO3 likely played a vital role in the excellent electromagnetic absorption properties described in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Naion batteries. Adv. Mater. 2015, 27, 3305–3309.

    Article  Google Scholar 

  2. Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.

    Article  Google Scholar 

  3. Chen, Y. M.; Li, Z.; Lou, X. W. D. General formation of MxCo3−x S4 (M = Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 10521–10524.

    Article  Google Scholar 

  4. Guo, W. X.; Sun, W. W.; Wang, Y. Multilayer CuO@NiO hollow spheres: Microwave-assisted metalorganic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 2015, 9, 11462–11471.

    Article  Google Scholar 

  5. Park, S. H.; Kim, H. K.; Yoon, B. S.; Lee, C. W.; Ahn, D.; Lee, S. I.; Roh, K. C.; Kim, K. B. Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 2015, 27, 457–465.

    Article  Google Scholar 

  6. Liu, Y. J.; Xin, F. X.; Zhu, E. B.; Chen, L.; Huang, Y.; Chen, C. F. PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Res. 2015, 8, 3342–3352.

    Article  Google Scholar 

  7. Wu, W.; Hao, R.; Liu, F.; Su, X. T.; Hou, Y. L. Singlecrystalline α-Fe2O3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light. J. Mater. Chem. A 2013, 1, 6888–6894.

    Article  Google Scholar 

  8. Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. D. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

    Article  Google Scholar 

  9. Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

    Article  Google Scholar 

  10. Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736–1743.

    Article  Google Scholar 

  11. He, S.; Wang, G. S.; Lu, C.; Luo, X.; Wen, B.; Guo, L.; Cao, M. S. Controllable fabrication of CuS hierarchical nanostructures and their optical, photocatalytic, and wave absorption properties. ChemPlusChem 2013, 78, 250–258.

    Article  Google Scholar 

  12. Ma, R. G.; Wang, M.; Dam, D. T.; Dong, Y. C.; Chen, Y.; Moon, S. K.; Yoon, Y. J.; Lee, J. M. Halide-ion-assisted synthesis of different α-Fe2O3 hollow structures and their lithium-ion storage properties. ChemPlusChem 2015, 80, 522–528.

    Article  Google Scholar 

  13. Zhang, J. N.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Gu, S. J. Beyond yolk–shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.

    Article  Google Scholar 

  14. Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734–15740.

    Article  Google Scholar 

  15. Lv, H. L.; Ji, G. B.; Wang, M.; Shang, C. M.; Zhang, H. Q.; Du, Y. W. FeCo/ZnO composites with enhancing microwave absorbing properties: Effect of hydrothermal temperature and time. RSC Adv. 2014, 4, 57529–57533.

    Article  Google Scholar 

  16. Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.

    Article  Google Scholar 

  17. Qiu, J.; Qiu, T. T. Fabrication and microwave absorption properties of magnetite nanoparticle–carbon nanotube–hollow carbon fiber composites. Carbon 2015, 81, 20–28.

    Article  Google Scholar 

  18. Chen, Y.; Wang, Y. L.; Zhang, H. B.; Li, X. F.; Gui, C. X.; Yu, Z. Z. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 2015, 82, 67–76.

    Article  Google Scholar 

  19. Najim, M.; Modi, G.; Mishra, Y. K.; Adelung, R.; Singh, D.; Agarwala, V. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 2015, 17, 22923–22933.

    Article  Google Scholar 

  20. Zhao, B.; Fan, B. B.; Xu, Y. W.; Shao, G.; Wang, X. D.; Zhao, W. Y.; Zhang, R. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces 2015, 7, 26217–26225.

    Article  Google Scholar 

  21. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  Google Scholar 

  22. Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

    Article  Google Scholar 

  23. Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

    Article  Google Scholar 

  24. Shang, C. M.; Ji, G. B.; Liu, W.; Zhang, X. M., Lv, H. L.; Du, Y. W. One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application. RSC Adv. 2015, 5, 80450–80456.

    Article  Google Scholar 

  25. Yong, Y.; Yang, Y.; Wen, X.; Jun, D. Microwave electromagnetic and absorption properties of magnetite hollow nanostructures. J. Appl. Phys. 2014, 115, 17A521.

    Article  Google Scholar 

  26. Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

    Article  Google Scholar 

  27. Lv, H. L.; Ji, G. B.; Liu, W.; Zhang, H. Q.; Du, Y. W. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 2015, 3, 10232–10241.

    Article  Google Scholar 

  28. Fu, L. S.; Jiang, J. T.; Xu, C. Y.; Zhen, L. Synthesis of hexagonal Fe microflakes with excellent microwave absorption performance. CrystEngComm 2012, 14, 6827–6832.

    Article  Google Scholar 

  29. Lv, H. L.; Ji, G. B.; Liang, X. H.; Zhang, H. Q.; Du, Y. W. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 2015, 3, 5056–5064.

    Article  Google Scholar 

  30. Lv, H. L.; Ji, G. B.; Zhang, H. Q.; Li, M.; Zuo, Z. Z.; Zhao, Y.; Zhang, B. S.; Tang, D. M.; Du, Y. W. CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci. Rep. 2015, 5, 18249.

    Article  Google Scholar 

  31. Lv, H. L.; Liang, X. H.; Cheng, Y.; Ji, G. B.; Tang, D. M.; Zhang, B. S.; Zhang, H. Q.; Du, Y. W. Facile synthesis of porous coin-like iron and its excellent electromagnetic absorption performance. RSC Adv. 2015, 5, 25936–25941.

    Article  Google Scholar 

  32. Qiang, R.; Du, Y. C.; Zhao, H. T.; Wang, Y.; Tian, C. H.; Li, Z. G.; Han, X. J.; Xu, P. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 2015, 3, 13426–13434.

    Article  Google Scholar 

  33. Lv, H. L.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance. RSC Adv. 2015, 5, 76836–76843.

    Article  Google Scholar 

  34. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Chen, Y. Q.; Zhang, R. Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 2015, 5, 9806–9814.

    Article  Google Scholar 

  35. Wen, S. L.; Liu, Y.; Zhao, X. C.; Cheng, J. W.; Li, H. Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 2014, 16, 18333–18340.

    Article  Google Scholar 

  36. Zhang, L. L.; Yu, X. X.; Hu, H. R.; Li, Y.; Wu, M. Z.; Wang, Z. Z.; Li, G.; Sun, Z. Q.; Chen, C. L. Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep. 2015, 5, 9298.

    Article  Google Scholar 

  37. Batter, B.; Wang, L.; Zhao, L.; Yu, P.; Tian, C. G.; Pan, K.; Fu, H. G. A novel Fe3C/graphitic carbon composite with electromagnetic wave absorption properties in the C-band. RSC Adv. 2015, 5, 60135–60140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Ji.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Zhang, H., Zhao, J. et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 9, 1813–1822 (2016). https://doi.org/10.1007/s12274-016-1074-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1074-1

Keywords

Navigation