Nano Research

, Volume 9, Issue 5, pp 1244–1255 | Cite as

Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction

Research Article

Abstract

To commercialize fuel cells and metal-air batteries, cost-effective, highly active catalysts for the oxygen reduction reaction (ORR) must be developed. Herein, we describe the development of low-cost, heteroatom (N, P, Fe) ternary-doped, porous carbons (HDPC). These materials are prepared by one-step pyrolysis of natural tea leaves treated with an iron salt, without any chemical and physical activation. The natural structure of the tea leaves provide a 3D hierarchical porous structure after carbonization. Moreover, heteroatom containing organic compounds in tea leaves act as precursors to functionalize the resultant carbon frameworks. In addition, we found that the polyphenols present in tea leaves act as ligands, reacting with Fe ions to form coordination compounds; these complexes acted as the precursors for Fe and N active sites. After pyrolysis, the as-prepared HDPC electrocatalysts, especially HDPC-800 (pyrolyzed at 800 °C), had more positive onsets, half-wave potentials, and higher catalytic activities for the ORR, which proceeds via a direct four-electron reaction pathway in alkaline media, similar to commercial Pt/C catalysts. Furthermore, HDPC-X also showed enhanced durability and better tolerance to methanol crossover and CO poisoning effects in comparison to commercial Pt/C, making them promising alternatives for state-of-the-art ORR electrocatalysts for electrochemical energy conversion. The method used here provides valuable guidelines for the design of high-performance ORR electrocatalysts from natural sources at the industrial scale.

Keywords

green tea leaves oxygen reduction catalysts heteroatoms doped hierarchically porous carbon synergistic effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1020_MOESM1_ESM.pdf (4.2 mb)
Supplementary material, approximately 4.20 MB.

References

  1. [1]
    Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.CrossRefGoogle Scholar
  2. [2]
    Nagasawa, K.; Takao, S.; Higashi, K.; Nagamatsu, S. I.; Samjeské, G.; Imaizumi, Y.; Sekizawa, O.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques. Phys. Chem. Chem. Phys. 2014, 16, 10075–10087.CrossRefGoogle Scholar
  3. [3]
    Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganesecobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.CrossRefGoogle Scholar
  4. [4]
    Wen, Z. H.; Ci, S. Q.; Zhang, F.; Feng, X. L.; Cui, S. M.; Mao, S.; Luo, S. L.; He, Z.; Chen, J. H. Nitrogen-enriched core–shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 1399–1404.CrossRefGoogle Scholar
  5. [5]
    Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H. S.; Marques, A. L. B.; Marques, E. P.; Wang, H. J.; Zhang, J. J. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 2008, 53, 4937–4951.CrossRefGoogle Scholar
  6. [6]
    Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.CrossRefGoogle Scholar
  7. [7]
    Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211.CrossRefGoogle Scholar
  8. [8]
    Qing, X. T.; Cao, Y.; Wang, J.; Chen, J. J.; Lu, Y. P/N/O co-doped carbonaceous material based supercapacitor with voltage up to 1.9 V in aqueous electrolyte. RSC. Adv. 2014, 4, 55971–55979.CrossRefGoogle Scholar
  9. [9]
    Zhang, Y. J.; Chu, M.; Yang, L.; Deng, W. F.; Tan, Y. M.; Ma, M.; Xie, Q. J. Synthesis and oxygen reduction properties of three-dimensional sulfur-doped graphene networks. Chem. Commun. 2014, 50, 6382–6385.CrossRefGoogle Scholar
  10. [10]
    Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edgeselectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.CrossRefGoogle Scholar
  11. [11]
    Huang, C. C.; Sun, T.; Hulicova-Jurcakova, D. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons. ChemSusChem 2013, 6, 2330–2339.CrossRefGoogle Scholar
  12. [12]
    Song, M. Y.; Park, H. Y.; Yang, D. S.; Bhattacharjya, D.; Yu, J. S. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. ChemSusChem 2014, 7, 1755–1763.CrossRefGoogle Scholar
  13. [13]
    Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Qin, X. Y.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24, 2037–2041.CrossRefGoogle Scholar
  14. [14]
    Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.CrossRefGoogle Scholar
  15. [15]
    Chaudhari, N. K.; Song, M. Y.; Yu, J.-S. Heteroatom-doped highly porous carbon from human urine. Sci. Rep. 2014, 4, 5221.Google Scholar
  16. [16]
    Chaudhari, K. N.; Song, M. Y.; Yu, J. S. Transforming hair into heteroatom-doped carbon with high surface area. Small 2014, 10, 2625–2636.CrossRefGoogle Scholar
  17. [17]
    Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15–18.CrossRefGoogle Scholar
  18. [18]
    Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.Google Scholar
  19. [19]
    Zhu, H.; Yin, J.; Wang, X. L.; Wang, H. Y.; Yang, X. R. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv. Funct. Mater. 2013, 23, 1305–1312.CrossRefGoogle Scholar
  20. [20]
    Graham, H. N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350.CrossRefGoogle Scholar
  21. [21]
    Chan, E. W. C.; Soh, E. Y.; Tie, P. P.; Law, Y. P. Antioxidant and antibacterial properties of green, black, and herbal teas of camellia sinensis. Pharmacogn. Res. 2011, 3, 266–272.CrossRefGoogle Scholar
  22. [22]
    Saito, S. T.; Welzel, A.; Suyenaga, E. S.; Bueno, F. A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C) and caffeine (CAF) in green tea using HPLC. Ciênc. Tecnol. Aliment. (Campinas) 2006, 26, 394–400.CrossRefGoogle Scholar
  23. [23]
    Markova, Z.; Novak, P.; Kaslik, J.; Plachtova, P.; Brazdova, M.; Jancula, D.; Siskova, K. M.; Machala, L.; Marsalek, B.; Zboril, R. et al. Iron(II, III)-polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. ACS Sustainable Chem. Eng. 2014, 2, 1674–1680.CrossRefGoogle Scholar
  24. [24]
    Akhavan, O.; Bijanzad, K.; Mirsepah, A. Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv. 2014, 4, 20441–20448.CrossRefGoogle Scholar
  25. [25]
    Ferrari, A. C.; Robertson, J. Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  26. [26]
    Meng, Y. Y.; Zou, X. X.; Huang, X. X.; Goswami, A.; Liu, Z. W.; Asefa, T. Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Adv. Mater. 2014, 26, 6510–6516.CrossRefGoogle Scholar
  27. [27]
    Cai, H. M.; Peng, C. Y.; Chen, J.; Hou, R. Y.; Gao, H. J.; Wan, X. C. X-ray photoelectron spectroscopy surface analysis of fluoride stress in tea (Camellia sinensis (L.) O. Kuntze) leaves. J. Fluorine Chem. 2014, 158, 11–15.CrossRefGoogle Scholar
  28. [28]
    Barazzouk, S.; Daneault, C. Amino acid and peptide immobilization on oxidized nanocellulose: Spectroscopic characterization. Nanomaterials 2012, 2, 187–205.CrossRefGoogle Scholar
  29. [29]
    Dake, L. S.; Baer, D. R.; Friedrich, D. M. Auger parameter measurements of phosphorus compounds for characterization of phosphazenes. J. Vac. Sci. Technol. A 1989, 7, 1634–1638.CrossRefGoogle Scholar
  30. [30]
    Wu, J.; Yang, Z. R.; Sun, Q. J.; Li, X. W.; Strasser, P.; Yang, R. Z. Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction. Electrochim. Acta 2014, 127, 53–60.CrossRefGoogle Scholar
  31. [31]
    Titirici, M.-M.; Thomas, A.; Antonietti, M. Aminated hydrophilic ordered mesoporous carbons. J. Mater. Chem. 2007, 17, 3412–3418.CrossRefGoogle Scholar
  32. [32]
    Liu, S. S.; Deng, C. W.; Yao, L.; Zhong, H. X.; Zhang, H. M. The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction. J. Power Sources 2014, 269, 225–235.CrossRefGoogle Scholar
  33. [33]
    Kim, D. W.; Li, O. L.; Saito, N. The role of the central Fe atom in the N4-macrocyclic structure for the enhancement of oxygen reduction reaction in a heteroatom nitrogen-carbon nanosphere. Phys. Chem. Chem. Phys. 2014, 16, 14905–14911.CrossRefGoogle Scholar
  34. [34]
    Byon, H. R.; Suntivich, J.; Crumlin, E. J.; Shao-Horn, Y. Fe-N-modified multi-walled carbon nanotubes for oxygen reduction reaction in acid. Phys. Chem. Chem. Phys. 2011, 13, 21437–21445.CrossRefGoogle Scholar
  35. [35]
    Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.CrossRefGoogle Scholar
  36. [36]
    Cui, Q.; Chao, S. J.; Wang, P. H.; Bai, Z. Y.; Yan, H. Y.; Wang, K.; Yang, L. Fe-N/C catalysts synthesized by heattreatment of iron triazine carboxylic acid derivative complex for oxygen reduction reaction. RSC Adv. 2014, 4, 12168–12174.CrossRefGoogle Scholar
  37. [37]
    Qu, L. T.; Liu, Y.; Baekand, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  38. [38]
    Zhang, M.; Jia, M. Q. High rate capability and long cycle stability Fe3O4-graphene nanocomposite as anode material for lithium ion batteries. J. Alloy. Compd. 2013, 551, 53–60.CrossRefGoogle Scholar
  39. [39]
    Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyaci, E.; Eroglu, A. E.; Scott, T. B.; Hallam, K. R. Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011, 172, 258–266.CrossRefGoogle Scholar
  40. [40]
    Wang, W. P.; Yang, H.; Xian, T.; Jiang, J. L. XPS and magnetic properties of CoFe2O4 nanoparticles synthesized by a polyacrylamide gel route. Mater. Trans. 2012, 53, 1586–1589.CrossRefGoogle Scholar
  41. [41]
    Yan, X. D.; Liu, Y.; Fan, X. R.; Jia, X. L.; Yu, Y. H.; Yang, X. P. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors. J. Power Sources 2014, 248, 745–751.CrossRefGoogle Scholar
  42. [42]
    Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew.Chem.Int. Ed. 2011, 50, 3257–3261.CrossRefGoogle Scholar
  43. [43]
    Dou, S.; Shen, A. L.; Ma, Z. L.; Wu, J. H.; Tao, L.; Wang, S. Y. N, P and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction. J. Electroanal. Chem. 2015, 753, 21–27.CrossRefGoogle Scholar
  44. [44]
    Zhu, J. L.; Jiang, S. P.; Wang, R. H.; Shi, K. Y.; Shen, P. K. One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A. 2014, 2, 15448–15453.CrossRefGoogle Scholar
  45. [45]
    Zhuang, G. L.; Bai, J. Q.; Tao, X. Y.; Luo, J. M.; Wang, X. D.; Gao, Y. F.; Zhong, X.; Li, X. N.; Wang, J. G. Synergistic effect of S, N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and Li-ion batteries. J. Mater. Chem. A 2015, 3, 20244–20253.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and EnvironmentBeihang UniversityBeijingChina
  2. 2.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA
  3. 3.Beijing National Laboratory for Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations