Skip to main content
Log in

Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this article, we report a facile precursor pyrolysis method to prepare porous spinel-type cobalt manganese oxides (Co x Mn3-x O4) with controllable morphologies and crystalline structures. The capping agent in the reaction was found to be crucial on the formation of the porous spinel cobalt manganese oxides from cubic Co2MnO4 nanorods to tetragonal Co2Mn4 microspheres and tetragonal Co2Mn4 cubes, respectively. All of the prepared spinel materials exhibit brilliant oxygen reduction reaction (ORR) electrocatalysis along with high stability. In particular, the cubic Co2MnO4 nanorods show the best performance with an onset potential of 0.9 V and a half-wave potential of 0.72 V which are very close to the commercial Pt/C. Meanwhile, the cubic Co2MnO4 nanorods present superior stability with negligible degradation of their electrocatalytic activity after a continuous operation time of 10,000 seconds, which is much better than the commercial Pt/C electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamasaki, Y.; Miyasaka, S.; Kaneko, Y.; He, J. P.; Arima, T.; Tokura, Y. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 2006, 96, 207204.

    Article  Google Scholar 

  2. Hong, J. F.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gösele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 2006, 5, 627–631.

    Article  Google Scholar 

  3. Habjanic, J.; Juric, M.; Popovic, J.; Molcanov, K.; Pajic, D. A 3D oxalate-based network as a precursor for the CoMn2O4 spinel: Synthesis and structural and magnetic studies. Inorg. Chem. 2014, 53, 9633–9643.

    Article  Google Scholar 

  4. Song, Q.; Zhang, Z. J. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 2004, 126, 6164–6168.

    Article  Google Scholar 

  5. Song, Q.; Zhang, Z. J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J. Am. Chem. Soc. 2012, 134, 10182–10190.

    Article  Google Scholar 

  6. Chasserio, N.; Durand, B.; Guillemet, S.; Rousset, A. Mixed manganese spinel oxides: Optical properties in the infrared range. J. Mater. Sci. 2007, 42, 794–800.

    Article  Google Scholar 

  7. Vignesh, R. H.; Sankar, K. V.; Amaresh, S.; Lee, Y. S.; Selvan, R. K. Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensor. Actuat. B-Chem. 2015, 220, 50–58.

    Article  Google Scholar 

  8. Lavela, P.; Tirado, J. L.; Vidal-Abarca, C. Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochim. Acta 2007, 52, 7986–7995.

    Article  Google Scholar 

  9. Li, F.; Li, G.; Chen, H.; Jia, J. Q.; Dong, F.; Hu, Y. B.; Shang, Z. G.; Zhang, Y. X. Morphology and crystallinitycontrolled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors. J. Power Sources 2015, 296, 86–91.

    Article  Google Scholar 

  10. Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel onedimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945–1954.

    Article  Google Scholar 

  11. Wu, F.; Li, N.; Su, Y. F.; Zhan, L. J.; Bao, L. Y.; Wang, J.; Chen, L.; Zheng, Y.; Dai, L. Q.; Peng, J. Y. et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014, 14, 3550–3555.

    Article  Google Scholar 

  12. Rios, E.; Gautier, J. L.; Poillerat, G.; Chartier, P. Mixed valency spinel oxides of transition metals and electrocatalysis: Case of the MnxCo3-x O4 system. Electrochim. Acta 1998, 44, 1491–1497.

    Article  Google Scholar 

  13. Robinson, D. M.; Go, Y. B.; Greenblatt, M.; Dismukes, G. C. Water oxidation by λ-MnO2: Catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J. Am. Chem. Soc. 2010, 132, 11467–11469.

    Article  Google Scholar 

  14. Yang, J. G.; Han, X. P.; Zhang, X. L.; Cheng, F. Y.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m). Nano Res. 2013, 6, 679–687.

    Article  Google Scholar 

  15. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  16. Gewirth, A. A.; Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 2010, 49, 3557–3566.

    Article  Google Scholar 

  17. Cao, X. C.; Wu, J.; Jin, C.; Tian, J. H.; Strasser, P.; Yang, R. Z. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 2015, 5, 4890–4896.

    Article  Google Scholar 

  18. Ge, X. M.; Liu, Y. Y.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Xiao, P.; Zhang, Z.; Lim, S. H.; Li, B.; Wang, X. et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl. Mater. Interface 2014, 6, 12684–12691.

    Article  Google Scholar 

  19. Zhu, H. Y.; Zhang, S.; Huang, Y. X.; Wu, L. H.; Sun, S. H. Monodisperse MxFe3-x O4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett. 2013, 13, 2947–2951.

    Article  Google Scholar 

  20. Diodati, S.; Pandolfo, L.; Caneschi, A.; Gialanella, S.; Gross, S. Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 2014, 7, 1027–1042.

    Article  Google Scholar 

  21. Ríos, E.; Abarca, S.; Daccarett, P.; Cong, H. N.; Martel, D.; Marco, J. F.; Gancedo, J. R.; Gautier, J. L. Electrocatalysis of oxygen reduction on Cu x Mn3-x O4 (1.0 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes. Int. J. Hydrogen Energy 2008, 33, 4945–4954.

    Article  Google Scholar 

  22. Pu, Z. H.; Liu, Q.; Tang, C.; Asiri, A. M.; Qusti, A. H.; Al- Youbi, A. O.; Sun, X. P. Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst. J. Power Sources 2014, 257, 170–173.

    Article  Google Scholar 

  23. Bo, X. J.; Zhang, Y. F.; Li, M.; Nsabimana, A.; Guo, L. P. NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4. J. Power Sources 2015, 288, 1–8.

    Article  Google Scholar 

  24. Sugawara, M.; Ohno, M.; Matsuki, K. Oxygen reduction catalysis of Mn–Co spinel oxides on a graphite electrode in alkaline solution. J. Mater. Chem. 1997, 7, 833–836.

    Article  Google Scholar 

  25. Wang, D. D.; Chen, X.; Evans, D. G.; Yang, W. S. Welldispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale 2013, 5, 5312–5315.

    Article  Google Scholar 

  26. Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganesecobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

    Article  Google Scholar 

  27. Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

    Article  Google Scholar 

  28. Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

    Article  Google Scholar 

  29. Cheng, F. Y.; Shen, J. A.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

    Article  Google Scholar 

  30. Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowiredirected templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.

    Article  Google Scholar 

  31. Zhou, M.; Yang, C. Z.; Chan, K. Y. Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction. Adv. Energy Mater. 2014, 4, 1400840.

    Google Scholar 

  32. Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108–1115.

    Article  Google Scholar 

  33. Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.

    Article  Google Scholar 

  34. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

    Article  Google Scholar 

  35. Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.

    Article  Google Scholar 

  36. Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. Carbonsupported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism. J. Phys. Chem. C 2007, 111, 1434–1443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangbin Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hu, F., Zhang, Y. et al. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 9, 207–213 (2016). https://doi.org/10.1007/s12274-016-0982-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0982-4

Keywords

Navigation