Skip to main content
Log in

A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled size and morphology. However, the frequently employed synthesis route using organic compounds either as the reaction medium or capping agent often results in residual molecules on the catalyst surface, which in turn drastically diminishes the catalytic performance. Herein, we report a facile, aqueous, surfactant-free synthesis of a novel Rh flowerlike structure obtained via hydrothermal reduction of Rh(acac)3 by formaldehyde. The unique Rh nanoflowers were constructed from ultrathin nanosheets, whose basal surfaces comprised {111} facets with an average thickness of ~1.1 nm. The specific surface area measured by CO stripping was 79.3 m2·g−1, which was much larger than that of commercial Rh black. More importantly, the Rh nanoflower catalyst exhibited excellent catalytic performance in the catalytic hydrogenation of phenol and cyclohexene, in contrast to the commercial Rh black and polyvinyl pyrrolidone (PVP)-capped Rh nanosheets exposed by similar {111} basal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mu, X. D.; Meng, J. X.; Li, Z. C.; Kou, Y. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: Long lifetime nanocluster catalysts for benzene hydrogenation. J. Am. Chem. Soc. 2005, 127, 9694–9695.

    Article  Google Scholar 

  2. Dykeman, R. R.; Yan, N.; Scopelliti, R.; Dyson, P. J. Enhanced rate of arene hydrogenation with imidazolium functionalized bipyridine stabilized rhodium nanoparticle catalysts. Inorg. Chem. 2011, 50, 717–719.

    Article  Google Scholar 

  3. Park, K. H.; Jang, K.; Kim, H. J.; Uk Son, S. Nearmonodisperse tetrahedral rhodium nanoparticles on charcoal: The shape-dependent catalytic hydrogenation of arenes. Angew. Chem., Int. Ed. 2007, 46, 1152–1155.

    Article  Google Scholar 

  4. Dahal, N.; García, S.; Zhou, J. P.; Humphrey, S. M. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 2012, 6, 9433–9446.

    Article  Google Scholar 

  5. Quek, X. Y.; Guan, Y. J.; Hensen, E. J. M. Structure sensitivity in the hydrogenation of unsaturated hydrocarbons over Rh nanoparticles. Catal. Today 2012, 183, 72–78.

    Article  Google Scholar 

  6. Yoon, B.; Wai, C. M. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J. Am. Chem. Soc. 2005, 127, 17174–17175.

    Article  Google Scholar 

  7. Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732.

    Article  Google Scholar 

  8. Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal–organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.

    Article  Google Scholar 

  9. Yuan, Y.; Yan, N.; Dyson, P. J. Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle core and stabilizer. ACS Catal. 2012, 2, 1057–1069.

    Article  Google Scholar 

  10. Sun, Z.; Wang, Y. H.; Niu, M. M.; Yi, H. Q.; Jiang, J. Y.; Jin, Z. L. Poly(ethylene glycol)-stabilized Rh nanoparticles as efficient and recyclable catalysts for hydroformylation of olefins. Catal. Commun. 2012, 27, 78–82.

    Article  Google Scholar 

  11. Zhang, Y. W.; Grass, M. E.; Huang, W. Y.; Somorjai, G. A. Seedless polyol synthesis and COoxidation activity of monodisperse (111)-and (100)-oriented rhodium nanocrystals in sub-10 nm sizes. Langmuir 2010, 26, 16463–16468.

    Article  Google Scholar 

  12. Hou, C. P.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.; Zheng, L. S. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in COoxidation. CrystEngComm 2013, 15, 6127–6130.

    Article  Google Scholar 

  13. Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Park, J. Y.; Li, Y. M.; Bluhm, H.; Bratlie, K. M.; Zhang, T. F.; Somorjai, G. A. A reactive oxide overlayer on rhodium nanoparticles during COoxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectronspectroscopy. Angew. Chem., Int. Ed. 2008, 47, 8893–8896.

    Article  Google Scholar 

  14. Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew. Chem., Int. Ed. 2014, 53, 5097–5101.

    Google Scholar 

  15. Muench, F.; Neetzel, C.; Kaserer, S.; Brötz, J.; Jaud, J. C.; Zhao-Karger, Z.; Lauterbach, S.; Kleebe, H. J.; Roth, C.; Ensinger, W. Fabrication of porous rhodium nanotube catalysts by electroless plating. J. Mater. Chem. 2012, 22, 12784–12791.

    Article  Google Scholar 

  16. Li, Y. Y.; Dian, P.; Jin, T.; Sun, J. S.; Xu, D. Shapecontrolled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation. Electrochim. Acta 2012, 83, 146–154.

    Article  Google Scholar 

  17. Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

    Article  Google Scholar 

  18. Jia, Y. Y.; Cao, Z. M.; Chen, Q. L.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of composition-tunable octahedral Pt–Cu alloy nanocrystals by controlling reduction kinetics of metal precursors. Sci. Bull. 2015, 60, 1002–1008.

    Article  Google Scholar 

  19. Zhang, Y. W.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W. Y.; Yang, P. D.; Somorjai, G. A. Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc. 2008, 130, 5868–5869.

    Article  Google Scholar 

  20. Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.

    Article  Google Scholar 

  21. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  Google Scholar 

  22. Zhang, L.; Chen, D. Q.; Jiang, Z. Y.; Zhang, J. W.; Xie, S. F.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 2012, 5, 181–189.

    Article  Google Scholar 

  23. Zhang, J. W.; Hou, C. P.; Huang, H.; Zhang, L.; Jiang, Z. Y.; Chen, G. X.; Jia, Y. Y.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Surfactant-concentration-dependent shape evolution of Au-Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 2013, 9, 538–544.

    Article  Google Scholar 

  24. Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem., Int. Ed. 2012, 51, 602–613.

    Article  Google Scholar 

  25. Chen, Y. M.; Chen, Q.-S.; Peng, S.-Y.; Wang, Z.-Q.; Lu, G.; Guo, G.-C. Manipulating the concavity of rhodium nanocubes enclosed by high-index facets via site-selective etching. Chem. Commun. 2014, 50, 1662–1664.

    Article  Google Scholar 

  26. Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J.; Yu, T.; Yang, D. R.; Xia, Y. N. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 2011, 11, 898–903.

    Article  Google Scholar 

  27. Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  28. Hu, C. Y.; Lin, K. Q.; Wang, X. L.; Liu, S. J.; Yi, J.; Tian, Y.; Wu, B. H.; Chen, G. X.; Yang, H. Y.; Dai, Y. et al. Electrostatic self-assembling formation of Pd superlattice nanowires from surfactant-free ultrathin Pd nanosheets. J. Am. Chem. Soc. 2014, 136, 12856–12859.

    Article  Google Scholar 

  29. Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292–297.

    Article  Google Scholar 

  30. Yin, A. X.; Liu, W. C.; Ke, J.; Hu, W.; Gu, J.; Zhang, Y. W.; Yan, C. H. Ru nanocrystals with shape-dependent surfaceenhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.

    Article  Google Scholar 

  31. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  32. Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale 2014, 6, 1271–1276.

    Article  Google Scholar 

  33. Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.

    Google Scholar 

  34. Jang, K.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chem. Mater. 2010, 22, 1273–1275.

    Article  Google Scholar 

  35. Sathe, B. R. High aspect ratio rhodium nanostructures for tunable electrocatalytic performance. Phys. Chem. Chem. Phys. 2013, 15, 7866–7872.

    Article  Google Scholar 

  36. Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.

    Article  Google Scholar 

  37. Kuhn, J. N.; Tsung, C. K.; Huang, W. Y.; Somorjai, G. A. Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J. Catal. 2009, 265, 209–215.

    Article  Google Scholar 

  38. Li, Y.; El-Sayed, M. A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 2001, 105, 8938–8943.

    Article  Google Scholar 

  39. Lee, H.; Kim, C.; Yang, S.; Han, J. W; Kim, J. Shapecontrolled nanocrystals for catalytic applications. Catal. Surv. Asia 2012, 16, 14–27.

    Article  Google Scholar 

  40. Monzó, J.; Koper, M. T. M.; Rodriguez, P. Removing polyvinylpyrrolidone from catalytic Pt nanoparticles without modification of superficial order. ChemPhysChem 2012, 13, 709–715.

    Article  Google Scholar 

  41. Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

    Article  Google Scholar 

  42. Chen, Y.; Gu, X.; Nie, C. G.; Jiang, Z. Y.; Xie, Z. X.; Lin, C. J. Shape controlled growth of gold nanoparticles by a solution synthesis. Chem. Commun. 2005, (33), 4181–4183.

    Article  Google Scholar 

  43. Pan, Y. T.; Yin, X.; Kwok, K. S.; Yang, H. Higher-order nanostructures of two-dimensional palladium nanosheets for fast hydrogen sensing. Nano Lett. 2014, 14, 5953–5959.

    Article  Google Scholar 

  44. Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

    Article  Google Scholar 

  45. Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P.; Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.

    Article  Google Scholar 

  46. World Health Organization. Formaldehyde: Health and safety guide [Online]. IPCS International programme on chemical safety: Health and safety guide No. 57. http://www.inchem.org/documents/hsg/hsg/hsg057.htm (accessed Sep 14, 2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqi Jiang or Zhaoxiong Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Su, J., Yang, Y. et al. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties. Nano Res. 9, 849–856 (2016). https://doi.org/10.1007/s12274-015-0964-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0964-y

Keywords

Navigation