Skip to main content

Controlling the properties of surface acoustic waves using graphene


Surface acoustic waves (SAWs) are elastic waves that propagate on the surface of a solid, much like waves on the ocean, with SAW devices used widely in communication and sensing. The ability to dynamically control the properties of SAWs would allow the creation of devices with improved performance or new functionality. However, so far it has proved extremely difficult to develop a practical way of achieving this control. In this paper we demonstrate voltage control of SAWs in a hybrid graphene-lithium niobate device. The velocity shift of the SAWs was measured as the conductivity of the graphene was modulated using an ion-gel gate, with a 0.1% velocity shift achieved for a bias of approximately 1 V. This velocity shift is comparable to that previously achieved in much more complicated hybrid semiconductor devices, and optimization of this approach could therefore lead to a practical, cost-effective voltage-controlled velocity shifter. In addition, the piezoelectric fields associated with the SAW can also be used to trap and transport the charge carriers within the graphene. Uniquely to graphene, we show that the acoustoelectric current in the same device can be reversed, and switched off, using the gate voltage.


  1. [1]

    White, R. M.; Voltmer, F. M. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 1965, 7, 314–316.

    Article  Google Scholar 

  2. [2]

    Morgan, D. Surface Acoustic Wave Filters; Academic Press: London, 2007.

    Google Scholar 

  3. [3]

    Ballantine, D. S.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications; Academic Press: San Diego, 1996.

    Google Scholar 

  4. [4]

    Wixforth, A.; Kotthaus, J. P.; Weimann, G. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system. Phys. Rev. Lett. 1986, 56, 2104–2106.

    Article  Google Scholar 

  5. [5]

    Wixforth, A.; Scriba, J.; Wassermeier, M.; Kotthaus, J. P.; Weimann, G.; Schlapp, W. Surface acoustic waves on GaAs/AlxGa1-xAs heterostructures. Phys. Rev. B 1989, 40, 7874–7887.

    Article  Google Scholar 

  6. [6]

    Willett, R. L.; West, K. W.; Pfeiffer, L. N. Transition in the correlated 2D electron system induced by a periodic density modulation. Phys. Rev. Lett. 1997, 78, 4478–4481.

    Article  Google Scholar 

  7. [7]

    Nash, G. R.; Bending, S. J.; Boero, M.; Grambow, P.; Eberl, K.; Kershaw, Y. Anisotropic surface acoustic wave scattering in quantum-wire arrays. Phys. Rev. B 1996, 54, R8337–R8340.

    Article  Google Scholar 

  8. [8]

    Nash, G. R.; Bending, S. J.; Boero, M.; Riek, M.; Eberl, K. Surface-acoustic-wave absorption by quantum-dot arrays. Phys. Rev. B 1999, 59, 7649–7655.

    Article  Google Scholar 

  9. [9]

    Rotter, M.; Wixforth, A.; Ruile, W.; Bernklau, D.; Riechert, H. Giant acoustoelectric effect in GaAs/LiNbO3 hybrids. Appl. Phys. Lett. 1998, 73, 2128–2130.

    Article  Google Scholar 

  10. [10]

    Fal’ko, V. I.; Meshkov, S. V.; Iordanskii, S. V. Acoustoelectric drag effect in the two-dimensional electron gas at strong magnetic field. Phys. Rev. B 1993, 47, 9910–9912.

    Article  Google Scholar 

  11. [11]

    Shilton, J. M.; Talyanskii, V. I.; Pepper, M.; Ritchie, D. A.; Frost, J. E. F.; Ford, C. J. B.; Smith, C. G.; Jones, G. A. C. High-frequency single-electron transport in a quasi-onedimensional GaAs channel induced by surface acoustic waves. J. Phys.: Condens. Matter 1996, 8, L531.

    Google Scholar 

  12. [12]

    Couto, O. D. D. Jr.; Lazic, S.; Iikawa, F.; Stotz, J. A. H.; Jahn, U.; Hey, R.; Santos, P. V. Photon anti-bunching in acoustically pumped quantum dots. Nat. Photonics 2009, 3, 645–648.

  13. [13]

    Hermelin, S.; Takada, S.; Yamamoto, M.; Tarucha, S.; Wieck, A. D.; Saminadayar, L.; Bäuerle, C.; Meunier, T. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 2011, 477, 435–438.

    Article  Google Scholar 

  14. [14]

    Schiefele, J.; Pedrós, J.; Sols, F.; Calle, F.; Guinea, F. Coupling light into graphene plasmons through surface acoustic waves. Phys. Rev. Lett. 2013, 111, 237405.

    Article  Google Scholar 

  15. [15]

    Zhang, S. H.; Xu, W. Absorption of surface acoustic waves by graphene. AIP Adv. 2011, 1, 022146.

    Article  Google Scholar 

  16. [16]

    Thalmeier, P.; Dóra, B.; Ziegler, K. Surface acoustic wave propagation in graphene. Phys. Rev. B 2010, 81, 041409.

    Article  Google Scholar 

  17. [17]

    Yurchenko, S. O.; Komarov, K. A.; Pustovoit, V. I. Multilayergraphene- based amplifier of surface acoustic waves. AIP Adv. 2015, 5, 057144.

    Article  Google Scholar 

  18. [18]

    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  19. [19]

    Arsat, R.; Breedon, M.; Shafiei, M.; Spizziri, P. G.; Gilje, S.; Kaner, R. B.; Kalantar-Zadeh, K.; Wlodarski, W. Graphenelike nano-sheets for surface acoustic wave gas sensor applications. Chem. Phys. Lett. 2009, 467, 344–347.

    Article  Google Scholar 

  20. [20]

    Ciplys, D.; Rimeika, R.; Chivukula, V.; Shur, M. S.; Kim, J. H.; Xu, J. M. Surface acoustic waves in graphene structures: Response to ambient humidity. In Proceedings of the 2010 IEEE Sensors, Kona, HI, 2010, pp 785–788.

    Google Scholar 

  21. [21]

    Guo, Y. J.; Zhang, J.; Zhao, C.; Hu, P. A.; Zu, X. T.; Fu, Y. Q. Graphene/LiNbO3 surface acoustic wave device based relative humidity sensor. Optik 2014, 125, 5800–5802.

    Article  Google Scholar 

  22. [22]

    Xuan, W. P.; He, M.; Meng, N.; He, X. L.; Wang, W. B.; Chen, J. K.; Shi, T. J.; Hasan, T.; Xu, Z.; Xu Y. et al. Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer. Sci. Rep. 2014, 4, 7206.

    Article  Google Scholar 

  23. [23]

    Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R. Gas loading of graphene-quartz surface acoustic wave devices. Appl. Phys. Lett. 2013, 103, 063110.

    Article  Google Scholar 

  24. [24]

    Miseikis, V.; Cunningham, J. E.; Saeed, K.; O’Rorke, R.; Davies, A. G. Acoustically induced current flow in graphene. Appl. Phys. Lett. 2012, 100, 133105.

    Article  Google Scholar 

  25. [25]

    Santos, P. V.; Schumann, T.; Oliveira, M. H.; Lopes, J. M. J.; Riechert, H. Acousto-electric transport in epitaxial monolayer graphene on SiC. Appl. Phys. Lett. 2013, 102, 221907.

    Article  Google Scholar 

  26. [26]

    Bandhu, L.; Lawton, L. M.; Nash, G. R. Macroscopic acoustoelectric charge transport in graphene. Appl. Phys. Lett. 2013, 103, 133101.

    Article  Google Scholar 

  27. [27]

    Bandhu, L.; Nash, G. R. Temperature dependence of the acoustoelectric current in graphene. Appl. Phys. Lett. 2014, 105, 263106.

    Article  Google Scholar 

  28. [28]

    Poole, T.; Bandhu, L.; Nash, G. R. Acoustoelectric photoresponse in graphene. Appl. Phys. Lett. 2015, 106, 133107.

    Article  Google Scholar 

  29. [29]

    Pohl, A. A review of wireless SAW sensors. IEEE Trans. Ultrason., Ferroelect., Freq. Control 2000, 47, 317–332.

    Article  Google Scholar 

  30. [30]

    Kalinin, V. Wireless physical SAW sensors for automotive applications. In Proceedings of the 2011 IEEE International Ultrasonics Symposium, Orlando, USA, 2011, pp 212–221.

    Chapter  Google Scholar 

  31. [31]

    Chakraborty, B.; Das, A.; Sood, A. K. The formation of a p–n junction in a polymer electrolyte top-gated bilayer graphene transistor. Nanotechnology 2009, 20, 365203.

    Article  Google Scholar 

  32. [32]

    Budreau, A. J.; Carr, P. H.; Silva, J. H. New configuration for electronically variable saw delay line. In Proceedings of the 1982 Ultrasonics Symposium, San Diego, USA, 1982, pp 399–400.

    Chapter  Google Scholar 

  33. [33]

    Zhu, J.; Chen, Y.; Saraf, G.; Emanetoglu, N. W.; Lu, Y. C. Voltage tunable surface acoustic wave phase shifter using semiconducting/piezoelectric ZnO dual layers grown on r-Al2O3. Appl. Phys. Lett. 2006, 89, 103513.

    Article  Google Scholar 

  34. [34]

    Li., X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  35. [35]

    Kim, B. J.; Jang, H.; Lee, S. K.; Hong, B. H.; Ahn, J. H.; Cho J. H. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010, 10, 3464–3466.

    Article  Google Scholar 

  36. [36]

    Liu, J. K.; Qian, Q. K.; Zou, Y.; Li, G. H.; Jin, Y. H.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Enhanced performance of graphene transistor with ion-gel top gate. Carbon 2014, 68, 480–486.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Geoffrey R. Nash.

Additional information

This article is published with open access at

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Electronic supplementary material

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bandhu, L., Nash, G.R. Controlling the properties of surface acoustic waves using graphene. Nano Res. 9, 685–691 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • graphene
  • sensors
  • surface acoustic wave
  • charge transport