Skip to main content
Log in

Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the fabrication of polymer/inorganic hybrid solar cells (HSCs) based on CdSe nanorods (NRs) and the semiconducting polymer PTB7. The power conversion efficiency of HSCs can be significantly enhanced by engineering the polymer/nanocrystal interface with ethanedithiol (EDT) and 1,4-benzenedithiol (1,4-BDT) treatments and reached 2.58% and 2.79%, respectively. These results were preferable to that of a pyridine-coated NR-based device (1.75%). This improvement was attributed to the thiol groups of EDT and 1,4-BDT, which can tightly coordinate the Cd ions to form Cd-thialate on CdSe NR surfaces, thereby effectively passivating the NR surface and reducing the active layer defects. Therefore, the rate of exciton generation and dissociation was enhanced and led to the improvement of the device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snaith, H. J.; Whiting, G. L.; Sun, B. Q.; Greenham, N. C.; Huck, W. T. S.; Friend, R. H. Self-organization of nanocrystals in polymer brushes. Application in heterojunction photovoltaic diodes. Nano Lett. 2005, 5, 1653–1657.

    Article  Google Scholar 

  2. Bansal, N.; Reynolds, L. X.; MacLachlan, A.; Lutz, T.; Ashraf, R. S.; Zhang, W. M.; Nielsen, C. B.; McCulloch, I.; Rebois, D. G.; Kirchartz, T. et al. Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells. Sci. Rep. 2013, 3, 1531.

    Article  Google Scholar 

  3. Dixit, S. K.; Madan, S.; Kaur, A.; Madhwal, D.; Singh, I.; Bhatnagar, P. K.; Mathur, P. C.; Bhatia, C. S. Enhancement of efficiency of a conducting polymer P3HT:CdSe/ZnS quantum dots hybrid solar cell by adding single walled carbon nanotube for transporting photogenerated electrons. J. Renewable Sustainable Energy 2013, 5, 033107.

    Article  Google Scholar 

  4. Böhm, M. L.; Kist, R. J. P.; Morgenstern, F. S. F.; Ehrler, B.; Zarra, S.; Kumar, A.; Vaynzof, Y.; Greenham, N. C. The Influence of nanocrystal aggregates on photovoltaic performance in nanocrystal-polymer bulk heterojunction solar cells. Adv. Energy Mater. 2014, 4, 1400139.

    Article  Google Scholar 

  5. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

    Article  Google Scholar 

  6. Chang, J.; Waclawik, E. R. Colloidal semiconductor nanocrystals: Controlled synthesis and surface chemistry in organic media. RSC Adv. 2014, 4, 23505–23527.

    Article  Google Scholar 

  7. Greaney, M. J.; Brutchey, R. L. Ligand engineering in hybrid polymer:nanocrystal solar cells. Mater. Today 2015, 18, 31–38.

    Article  Google Scholar 

  8. Li, Y. J.; Liu, T. F.; Liu, H. B.; Tian, M. Z.; Li, Y. L. Selfassembly of intramolecular charge-transfer compounds into functional molecular systems. Acc. Chem. Res. 2014, 47, 1186–1198.

    Article  Google Scholar 

  9. Guo, Y. B.; Xu, L.; Liu, H. B.; Li, Y. J.; Che, C. M.; Li, Y. L. Self-assembly of functional molecules into 1D crystalline nanostructures. Adv. Mater. 2015, 27, 985–1013.

    Article  Google Scholar 

  10. Jeltsch, K. F.; Schädel, M.; Bonekamp, J. B.; Niyamakom, P.; Rauscher, F.; Lademann, H. W. A.; Dumsch, I.; Allard, S.; Scherf, U.; Meerholz, K. Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv. Funct. Mater. 2012, 22, 397–404.

    Article  Google Scholar 

  11. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393.

    Article  Google Scholar 

  12. Bang, J. H.; Kamat, P. V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476.

    Article  Google Scholar 

  13. Farrow, B.; Kamat, P. V. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 2009, 131, 11124–11131.

    Article  Google Scholar 

  14. Hungría, A. B.; Juárez, B. H.; Klinke, C.; Weller, H.; Midgley, P. A. 3-D characterization of CdSe nanoparticles attached to carbon nanotubes. Nano Res. 2008, 1, 89–97.

    Article  Google Scholar 

  15. Fasoli, A.; Colli, A.; Martelli, F.; Pisana, S.; Tan, P. H.; Ferrari, A. C. Photoluminescence of CdSe nanowires grown with and without metal catalyst. Nano Res. 2011, 4, 343–359.

    Article  Google Scholar 

  16. Gao, B.; Lin, Y.; Wei, S. J.; Zeng, J.; Liao, Y.; Chen, L. G.; Goldfeld, D.; Wang, X. P.; Luo, Y.; Dong, Z. C. et al. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 2012, 5, 88–98.

    Article  Google Scholar 

  17. Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54, 17628.

    Article  Google Scholar 

  18. Fu, W. F.; Wang, L.; Zhang, Y. F.; Ma, R. S.; Zuo, L. J.; Mai, J. Q.; Lau, T. K.; Du, S. X.; Lu, X. H.; Shi, M. M. et al. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface. ACS Appl. Mater. Interfaces 2014, 6, 19154–19160.

    Article  Google Scholar 

  19. You, J. B.; Dou, L. T.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.

    Article  Google Scholar 

  20. Chen, J. D.; Cui, C. H.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y. F.; Tang, J. X. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 2015, 27, 1035–1041.

    Article  Google Scholar 

  21. Zhou, R. J.; Stalder, R.; Xie, D. P.; Cao, W. R.; Zheng, Y.; Yang, Y. X.; Plaisant, M.; Holloway, P. H.; Schanze, K. S.; Reynolds, J. R. et al. Enhancing the efficiency of solutionprocessed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment. ACS Nano 2013, 7, 4846–4854.

    Article  Google Scholar 

  22. Liao, H. C.; Chen, S. Y.; Liu, D. M. In-situ growing CdS single-crystal nanorods via P3HT polymer as a soft template for enhancing photovoltaic performance. Macromolecules 2009, 42, 6558–6563.

    Article  Google Scholar 

  23. Sun, B. Q.; Greenham, N. C. Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys. Chem. Chem. Phys. 2006, 8, 3557–3560.

    Article  Google Scholar 

  24. Kuo, C. Y.; Su, M. S.; Chen, G. Y.; Ku, C. S.; Lee, H. Y.; Wei, K. H. Annealing treatment improves the morphology and performance of photovoltaic devices prepared from thieno[3,4-c]pyrrole-4,6-dione-based donor/acceptor conjugated polymers and CdSe nanostructures. Energy Environ. Sci. 2011, 4, 2316–2322.

    Article  Google Scholar 

  25. Jiu, T. G.; Reiss, P.; Guillerez, S.; de Bettignies, R.; Bailly, S.; Chandezon, F. Hybrid solar cells based on blends of CdSe nanorods and poly(3-alkylthiophene) nanofibers. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1619–1626.

    Article  Google Scholar 

  26. Dixit, S. K.; Madan, S.; Madhwal, D.; Kumar, J.; Singh, I.; Bhatia, C. S.; Bhatnagar, P. K.; Mathur, P. C. Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Org. Electron. 2012, 13, 710–714.

    Article  Google Scholar 

  27. Sun, B. Q.; Snaith, H. J.; Dhoot, A. S.; Westenhoff, S.; Greenham, N. C. Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys. 2005, 97, 014914.

    Article  Google Scholar 

  28. Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett. 2010, 10, 239–242.

    Article  Google Scholar 

  29. Albero, J.; Zhou, Y. F.; Eck, M.; Rauscher, F.; Niyamakom, P.; Dumsch, I.; Allard, S.; Scherf, U.; Krüger, M.; Palomares, E. Photo-induced charge recombination kinetics in low bandgap PCPDTBT polymer:CdSe quantum dot bulk heterojunction solar cells. Chem. Sci. 2011, 2, 2396–2401.

    Article  Google Scholar 

  30. Zhou, R. J.; Zheng, Y.; Qian, L.; Yang, Y. X.; Holloway, P. H.; Xue, J. G. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale 2012, 4, 3507–3514.

    Article  Google Scholar 

  31. Couderc, E.; Greaney, M. J.; Brutchey, R. L.; Bradforth, S. E. Direct spectroscopic evidence of ultrafast electron transfer from a low band gap polymer to CdSe quantum dots in hybrid photovoltaic thin films. J. Am. Chem. Soc. 2013, 135, 18418–18426.

    Article  Google Scholar 

  32. He, Z. C.; Zhong, C. M.; Su, S. J.; Xu, M.; Wu, H. B.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595.

    Google Scholar 

  33. Liu, C.; Wang, K.; Hu, X. W.; Yang, Y. L.; Hsu, C. H.; Zhang, W.; Xiao, S.; Gong, X.; Cao, Y. Molecular weight effect on the efficiency of polymer solar cells. ACS Appl. Mater. Interfaces 2013, 5, 12163–12167.

    Article  Google Scholar 

  34. Tan, W. Y.; Wang, R.; Li, M.; Liu, G.; Chen, P.; Li, X. C.; Lu, S. M.; Zhu, H. L.; Peng, Q. M.; Zhu, X. H. et al. Lending triarylphosphine oxide to phenanthroline: A facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes. Adv. Funct. Mater. 2014, 24, 6540–6547.

    Article  Google Scholar 

  35. Zhang, K.; Zhong, C. M.; Liu, S. J.; Mu, C.; Li, Z. K.; Yan, H.; Huang, F.; Cao, Y. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer. ACS Appl. Mater. Interfaces 2014, 6, 10429–10435.

    Article  Google Scholar 

  36. He, Z. C.; Zhong, C. M.; Huang, X.; Wong, W. Y.; Wu, H. B.; Chen, L. W.; Su, S. J.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636–4643.

    Article  Google Scholar 

  37. Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P. For the bright future–bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138.

    Article  Google Scholar 

  38. Wang, P.; Abrusci, A.; Wong, H. M. P.; Svensson, M.; Andersson, M. R.; Greenham, N. C. Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett. 2006, 6, 1789–1793.

    Article  Google Scholar 

  39. Fu, W. F.; Wang, L.; Ling, J.; Li, H. Y.; Shi, M. M.; Xue, J. G.; Chen, H. Z. Highly efficient hybrid solar cells with tunable dipole at the donor-acceptor interface. Nanoscale 2014, 6, 10545–10550.

    Article  Google Scholar 

  40. Lou, S. J.; Szarko, J. M.; Xu, T.; Yu, L. P.; Marks, T. J.; Chen, L. X. Effects of additives on the morphology of solution phase aggregates formed by active layer components of highefficiency organic solar cells. J. Am. Chem. Soc. 2011, 133, 20661–20663.

    Article  Google Scholar 

  41. Ochiai, S.; Imamura, S.; Kannappan, S.; Palanisamy, K.; Shin, P.-K. Characteristics and the effect of additives on the nanomorphology of PTB7/PC71BM composite films. Curr. Appl. Phys. 2013, 13, S58–S63.

    Article  Google Scholar 

  42. Sun, C. M.; Wu, Y. L.; Zhang, W. J.; Jiang, N. Q.; Jiu, T. G.; Fang, J. F. Improving efficiency by hybrid TiO2 nanorods with 1,10-phenanthroline as a cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 739–744.

    Article  Google Scholar 

  43. Kyaw, A. K. K.; Wang, D. H.; Wynands, D.; Zhang, J.; Nguyen, T.-Q.; Bazan, G. C.; Heeger, A. J. Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 2013, 13, 3796–3801.

    Article  Google Scholar 

  44. Lu, L. Y.; Luo, Z. Q.; Xu, T.; Yu, L. P. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 2013, 13, 59–64.

    Article  Google Scholar 

  45. Li, P. D.; Jiu, T. G.; Tang, G.; Wang, G. J.; Li, J.; Li, X. F.; Fang, J. F. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 18172–18179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tonggang Jiu, Fushen Lu or Junfeng Fang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Jiu, T., Kuang, C. et al. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 8, 3045–3053 (2015). https://doi.org/10.1007/s12274-015-0810-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0810-2

Keywords

Navigation