Skip to main content
Log in

Hole-doping of mechanically exfoliated graphene by confined hydration layers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

By the use of non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM), we measure the local surface potential of mechanically exfoliated graphene on the prototypical insulating hydrophilic substrate of CaF2(111). Hydration layers confined between the graphene and the CaF2 substrate, resulting from the graphene’s preparation under ambient conditions on the hydrophilic substrate surface, are found to electronically modify the graphene as the material’s electron density transfers from graphene to the hydration layer. Density functional theory (DFT) calculations predict that the first 2 to 3 water layers adjacent to the graphene hole-dope the graphene by several percent of a unit charge per unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Tang, D.-M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. S.; Sorokin, P. B.; Lou, J. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat Commun. 2014, 5, 3631.

    Google Scholar 

  3. Song, J.; Ko, T. Y.; Ryu, S. Raman spectroscopy study of annealing-induced effects on graphene prepared by micromechanical exfoliation. Bull Korean Chem Soc 2010, 31, 2679–2682.

    Article  Google Scholar 

  4. Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.

    Article  Google Scholar 

  5. Cao, P. G.; Xu, K.; Varghese, J. O.; Heath, J. R. The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. Nano Lett 2011, 11, 5581–5586.

    Article  Google Scholar 

  6. He, K. T.; Wood, J. D.; Doidge, G. P.; Pop, E.; Lyding, J. W. Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica. Nano Lett 2012, 12, 2665–2672.

    Article  Google Scholar 

  7. Komurasaki, H.; Tsukamoto, T.; Yamazaki, K.; Ogino, T. Layered structures of interfacial water and their effects on Raman spectra in graphene-on-sapphire systems. J. Phys. Chem. C 2012, 116, 10084–10089.

    Article  Google Scholar 

  8. Lee, M. J.; Choi, J. S.; Kim, J.-S.; Byun, I.-S.; Lee, D. H.; Ryu, S.; Lee, C.; Park, B. H. Characteristics and effects of diffused water between graphene and a SiO2 substrate. Nano Res. 2012, 5, 710–717.

    Article  Google Scholar 

  9. Severin, N.; Lange, P.; Sokolov, I. M.; Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene/mica slit pore. Nano Lett. 2012, 12, 774–779.

    Article  Google Scholar 

  10. Shim, J.; Lui, C. H.; Ko, T. Y.; Yu, Y.-J.; Kim, P.; Heinz, T. F. Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 2012, 12, 648–654.

    Article  Google Scholar 

  11. Verdaguer, A.; Sequra, J. J.; López-Mir, L.; Sauthier, G.; Fraxedas, J. Communication: Growing room temperature ice with graphene. J. Chem. Phys. 2013, 138, 121101.

    Article  Google Scholar 

  12. Temmen, M.; Ochedowski, O.; Schleberger, M.; Reichling, M.; Bollmann. T. R. J. Hydration layers trapped between graphene and a hydrophilic substrate. New J. Phys. 2014, 16, 053039.

    Article  Google Scholar 

  13. Goncher, S. J.; Zhao, L. Y.; Pasupathy, A. N.; Flynn, G. W. Substrate level control of the local doping in graphene. Nano Lett. 2013, 13, 1386–1392.

    Google Scholar 

  14. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

    Article  Google Scholar 

  15. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  16. Lübbe, J.; Tröger, L.; Torbrügge, S.; Bechstein, R.; Richter, C.; Kühnle, A.; Reichling, M. Achieving high effective Q-factors in ultra-high vacuum dynamic force microscopy. Meas. Sci. Technol. 2010, 21, 125501.

    Article  Google Scholar 

  17. Lübbe, J.; Doering, L.; Reichling, M. Precise determination of force microscopy cantilever stiffness from dimensions and eigenfrequencies. Meas. Sci. Technol. 2012, 23, 045401.

    Article  Google Scholar 

  18. Lübbe, J.; Temmen, M.; Rode, S.; Rahe, P.; Kühnle, A.; Reichling, M. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein J. Nanotechnol. 2013, 4, 32–44.

    Article  Google Scholar 

  19. Nonnenmacher, M.; O’ Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

    Article  Google Scholar 

  20. Weaver, J. M. R.; Abraham, D. W. High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B 1991, 9, 1559–1561.

    Article  Google Scholar 

  21. Frolov, V. D.; Pivovarov, P. A.; Zavedeev, E. V.; Khomich, A. A.; Grigorenko, A. N.; Konov, V. I. Laser-induced local profile transformation of multilayered graphene on a substrate. Opt. Laser Technol. 2015, 69, 34–38.

    Article  Google Scholar 

  22. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  23. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

  24. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  25. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  26. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  Google Scholar 

  27. Kresse, G.; Furthermüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  28. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  29. Reischl, B.; Watkins, M.; Foster, A. S. Free energy approaches for modeling atomic force microscopy in liquids. J. Chem. Theory Comput. 2013, 9, 600–608.

    Article  Google Scholar 

  30. Moser, J.; Verdaguer, A.; Jiménez, D.; Barreiro, A.; Bachtold, A. The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 2008, 92, 123507.

    Article  Google Scholar 

  31. Nosè, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  Google Scholar 

  32. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

    Article  Google Scholar 

  33. Pieper, H. H.; Barth, C.; Reichling, M. Characterization of atomic step structures on CaF2(111) by their electric potential. Appl. Phys. Lett. 2012, 101, 051601.

    Article  Google Scholar 

  34. Filleter, T.; Emtsev, K. V.; Seyller, T.; Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 2008, 93, 133117.

    Article  Google Scholar 

  35. Russ, J. C. The Image Processing Handbook (5th Ed.); CRC Press: Boca Raton, 2006.

    Book  Google Scholar 

  36. Bader, R. F. W. Atoms in molecules. In Encyclopedia of Computational Chemistry. von Ragué Schleyer, P., Ed.; Wiley: New York, 1990.

    Google Scholar 

  37. Wang, F.; Zhang, Y. B.; Tian, C. S.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. G. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209.

    Article  Google Scholar 

  38. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van der Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

    Article  Google Scholar 

  39. Latil, S.; Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 2006, 97, 036803.

    Article  Google Scholar 

  40. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  41. Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.

    Article  Google Scholar 

  42. Ziegler, D.; Gava, P.; Gü ttinger, J.; Molitor, F.; Wirtz, L.; Lazzeri, M.; Saitta, A. M.; Stemmer, A.; Mauri, F.; Stampfer, C. Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Phys. Rev. B 2011, 83, 235434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjeerd R. J. Bollmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bollmann, T.R.J., Antipina, L.Y., Temmen, M. et al. Hole-doping of mechanically exfoliated graphene by confined hydration layers. Nano Res. 8, 3020–3026 (2015). https://doi.org/10.1007/s12274-015-0807-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0807-x

Keywords

Navigation