Skip to main content
Log in

Morphological control of SnTe nanostructures by tuning catalyst composition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A method of controlling the morphology of SnTe nanostructures produced by a simple chemical vapor deposition is presented, in which Au-containing catalysts with different Au concentrations are used to induce specific growth behavior. Triangular SnTe nanoplates with a {100} dominated surface and {100}, {111} and {120} side facets were induced by AuSn catalysts, whereas <010> SnTe nanowires with four nonpolar {100} side-facets were produced using Au5Sn catalysts. Through detailed structural and chemical characterization, coupled with surface energy calculations, it is found that nanowire growth is thermodynamically controlled via a vapor-solid-solid growth mechanism, whereas nanoplate growth is kinetically controlled via a vapor-liquid-solid growth mechanism. Therefore, this study provides a fundamental understanding of the catalyst’s role in the growth of IV-VI compound nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erickson, A. S.; Chu, J. H.; Toney, M. F.; Geballe, T. H.; Fisher, I. R. Enhanced superconducting pairing interaction in indium-doped tin telluride. Phys. Rev. B 2009, 79, 024520.

    Article  Google Scholar 

  2. Salje, E. K. H.; Safarik, D. J.; Modic, K. A.; Gubernatis, J. E.; Cooley, J. C.; Taylor, R. D.; Mihaila, B.; Saxena, A.; Lookman, T.; Smith, J. L. et al. Tin telluride: A weakly coelastic metal. Phys. Rev. B 2010, 82, 184112.

    Article  Google Scholar 

  3. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

    Article  Google Scholar 

  4. Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803.

    Article  Google Scholar 

  5. Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; Xu, K.; He, J. Topological surface transport properties of singlecrystalline SnTe nanowire. Nano Lett. 2013, 13, 5344–5349.

    Article  Google Scholar 

  6. Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; He, J. Crystal shape engineering of topological crystalline insulator SnTe microcrystals and nanowires with huge thermal activation energy gap. Cryst. Growth Des. 2014, 14, 2502–2509.

    Article  Google Scholar 

  7. Li, Z.; Shao, S.; Li, N.; McCall, K.; Wang, J.; Zhang, S. X. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies. Nano Lett. 2013, 13, 5443–5448.

    Article  Google Scholar 

  8. Shen, J.; Cha, J. J. Topological crystalline insulator nanostructures. Nanoscale 2014, 6, 14133–14140.

    Article  Google Scholar 

  9. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

    Article  Google Scholar 

  10. Xu, H. Y.; Wang, Y.; Guo, Y. N.; Liao, Z. M.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Defect-free <110> zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett. 2012, 12, 5744–5749.

    Article  Google Scholar 

  11. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. Mrs. Bull. 2003, 28, 486–491.

    Article  Google Scholar 

  12. Xu, H.-Y.; Guo, Y.-N.; Liao, Z.-M.; Sun, W.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Catalyst size dependent growth of Pd-catalyzed one-dimensional InAs nanostructures. Appl. Phys. Lett. 2013, 102, 203108.

    Article  Google Scholar 

  13. Chiang, W.-H.; Mohan Sankaran, R. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1–x nanoparticles. Nat. Mater. 2009, 8, 882–886.

    Article  Google Scholar 

  14. Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J.-Q.; Xu, Z.; Peng, F. et al. Chiralityspecific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

    Article  Google Scholar 

  15. Kuykendall, T. R.; Altoe, M. V. P.; Ogletree, D. F.; Aloni, S. Catalyst-directed crystallographic orientation control of GaN nanowire growth. Nano Lett. 2014, 14, 6767–6773.

    Article  Google Scholar 

  16. Han, N.; Wang, F. Y.; Hou, J. J.; Yip, S.; Lin, H.; Fang, M.; Xiu, F.; Shi, X. L.; Hung, T.; Ho, J. C. Manipulated growth of GaAs nanowires: Controllable crystal quality and growth orientations via a supersaturation-controlled engineering process. Cryst. Growth Des. 2012, 12, 6243–6249.

    Article  Google Scholar 

  17. Zhang, Z.; Lu, Z. Y.; Xu, H. Y.; Chen, P. P.; Lu, W.; Zou, J. Structure and quality controlled growth of InAs nanowires through catalyst engineering. Nano Res. 2014, 7, 1640–1649.

    Article  Google Scholar 

  18. Zou, Y. C.; Chen, Z.-G.; Huang, Y.; Yang, L.; Drennan, J.; Zou, J. Anisotropic electrical properties from vapor–solid–solid grown Bi2Se3 nanoribbons and nanowires. J. Phys. Chem. C 2014, 118, 20620–20626.

    Article  Google Scholar 

  19. Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  Google Scholar 

  20. Cabri, L. J. Phase relations in the Au-Ag-Te systems and their mineralogical significance. Econ. Geol. 1965, 60, 1569–1606.

    Article  Google Scholar 

  21. Okamoto, H. Au-Sn (gold-tin). J. Phase Equilib. Diffus. 2007, 28, 490.

    Article  Google Scholar 

  22. Porter, D. A.; Easterling, K. E. Phase transformations in metals and alloys, revised reprint; CRC press: London, 1992.

    Book  Google Scholar 

  23. Ciulik, J.; Notis, M. R. The Au-Sn phase diagram. J. Alloys Compd. 1993, 191, 71–78.

    Article  Google Scholar 

  24. Biswas, S.; O’ Regan, C.; Petkov, N.; Morris, M. A.; Holmes, J. D. Manipulating the growth kinetics of vapor–liquid–solid propagated Ge nanowires. Nano Lett. 2013, 13, 4044–4052.

    Article  Google Scholar 

  25. Givargizov, E. I. Fundamental aspects of VLS growth. J. Cryst. Growth 1975, 31, 20–30.

    Article  Google Scholar 

  26. Liao, X. Z.; Serquis, A.; Jia, Q. X.; Peterson, D. E.; Zhu, Y. T.; Xu, H. F. Effect of catalyst composition on carbon nanotube growth. App. Phys. Lett. 2003, 82, 2694.

    Article  Google Scholar 

  27. Zhang, Z.; Zheng, K.; Lu, Z.-Y.; Chen, P.-P.; Lu, W.; Zou, J. Catalyst orientation-induced growth of defect-free zinc-blende structured <001> InAs nanowires. Nano Lett. 2015, 15, 876–882.

    Article  Google Scholar 

  28. Joyce, H. J.; Wong-Leung, J.; Gao, Q.; Tan, H. H.; Jagadish, C. Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters. Nano Lett. 2010, 10, 908–915.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Chen or Jin Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Chen, Z., Lin, J. et al. Morphological control of SnTe nanostructures by tuning catalyst composition. Nano Res. 8, 3011–3019 (2015). https://doi.org/10.1007/s12274-015-0806-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0806-y

Keywords

Navigation