Skip to main content
Log in

Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A new family of two-dimensional (2D) topological insulators (TIs) comprising g-TlA (A = N, P, As, and Sb) monolayers constructed by Tl and group-V elements is predicted by first-principles calculations and molecular-dynamics (MD) simulations. The geometric stability, band inversion, nontrivial edge states, and electric polarity are investigated to predict the large-gap quantum spin Hall insulator and Rashba-Dresselhaus effects. The MD results reveal that the g-TlA monolayers remain stable even at room temperature. The g-TlA (A = As, Sb) monolayers become TIs under the influence of strong spin-orbit couplings with large bulk bandgaps of 131 and 268 meV, respectively. A single band inversion is observed in each g-TlA (A = As, Sb) monolayer, indicating a nontrivial topological nature. Furthermore, the topological edge states are described by introducing a sufficiently wide zigzag-nanoribbon. A Dirac point in the middle of the bulk gap connects the valence- and conduction-band edges. The Fermi velocity near the Dirac point with a linear band dispersion is ~0.51 × 106 m/s, which is comparable to that of many other 2D nanomaterials. More importantly, owing to the broken inversion symmetry normal to the plane of the g-TlA films, a promising Rashba-Dresselhaus effect with the parameter up to 0.85 eV·Å is observed in the g-TlA (A = As, Sb) monolayers. Our findings regarding 2D topological g-TlA monolayers with room-temperature bandgaps, intriguing topological edge states, and a promising Rashba-Dresselhaus effect are of fundamental value and suggest potential applications in nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803.

    Article  Google Scholar 

  2. Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  3. Zhao, S. L.; Wang, H. A.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

    Article  Google Scholar 

  4. Chang, C.-Z.; Zhang, Z. C.; Li, K.; Feng, X.; Zhang, J. S.; Guo, M. H.; Feng, Y.; Wang, J.; Wang, L.-L.; Ma, X.-C. et al. Simultaneous electrical-field-effect modulation of both top and bottom dirac surface states of epitaxial thin films of three-dimensional topological insulators. Nano Lett. 2015, 15, 1090–1094.

    Article  Google Scholar 

  5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  6. Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett 2005, 95, 226801.

    Google Scholar 

  7. König, M.; Wiedmann, S.; Brü ne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X.-L.; Zhang, S.-C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

    Article  Google Scholar 

  8. Knez, I.; Du, R.-R.; Sullivan, G. Andreev reflection of helical edge modes in InAs/GaSb quantum spin Hall insulator. Phys. Rev. Lett 2012, 109, 186603.

    Article  Google Scholar 

  9. Koga, T.; Nitta, J.; Takayanagi, H.; Datta, S. Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys. Rev. Lett 2002, 88, 126601.

    Article  Google Scholar 

  10. Crepaldi, A.; Moreschini, L.; Autès, G.; Tournier- Colletta, C.; Moser, S.; Virk, N.; Berger, H.; Bugnon, P.; Chang, Y. J.; Kern, K. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett 2012, 109, 096803.

    Article  Google Scholar 

  11. Ma, Y. D.; Dai, Y.; Yin, N.; Jing, T.; Huang, B. B. Ideal twodimensional systems with a gain Rashba-type spin splitting: SrFBiS2 and BiOBiS2 nanosheets. J. Mater. Chem. C 2014, 2, 8539–8545.

    Article  Google Scholar 

  12. Ma, Y. D.; Dai, Y.; Wei, W.; Li, X. R.; Huang, B. B. Emergence of electric polarity in BiTeX (X= Br and I) monolayers and the giant Rashba spin splitting. Phys. Chem. Chem. Phys. 2014, 16, 17603–17609.

    Article  Google Scholar 

  13. Liu, Q. H.; Guo, Y. Z.; Freeman, A. J. Tunable Rashba effect in two-dimensional LaOBiS2 films: Ultrathin candidates for spin field effect transistors. Nano Lett. 2013, 13, 5264–5270.

    Article  Google Scholar 

  14. Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett 2006, 97, 236805.

    Article  Google Scholar 

  15. Liu, Z.; Liu, C.-X.; Wu, Y.-S.; Duan, W.-H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett 2011, 107, 136805–136809.

    Article  Google Scholar 

  16. Wang, Z. F.; Chen, L.; Liu, F. Tuning topological edge states of Bi (111) bilayer film by edge adsorption. Nano Lett. 2014, 14, 2879–2883.

    Article  Google Scholar 

  17. Zhang, P. F.; Liu, Z.; Duan, W. H.; Liu, F.; Wu, J. Topological and electronic transitions in a Sb (111) nanofilm: The interplay between quantum confinement and surface effect. Phys. Rev. B 2012, 85, 201410–201413.

    Article  Google Scholar 

  18. Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B.-L, Duan, W. H. Functionalized germanene as a prototype of large-gap twodimensional topological insulators. Phys. Rev. B 2014, 89, 115429–115433.

    Article  Google Scholar 

  19. Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M.-H. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.

    Article  Google Scholar 

  20. Drummond, N. D.; Zolyomi, V.; Fal'Ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423.

    Article  Google Scholar 

  21. Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methylfunctionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083–1089.

    Article  Google Scholar 

  22. Chuang, F.-C.; Yao, L.-Z.; Huang, Z.-Q.; Liu, Y.-T.; Hsu, C.-H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi. Nano Lett. 2014, 14, 2505–2508.

    Article  Google Scholar 

  23. Wang, G. A.; Zhu, X. G.; Wen, J.; Chen, X.; He, K.; Wang, L. L.; Ma, X. C.; Liu, Y.; Dai, X.; Fang, Z. et al. Atomically smooth ultrathin films of topological insulator Sb2Te3. Nano Res. 2010, 3, 874–880.

    Article  Google Scholar 

  24. Yang, F.; Miao, L.; Wang, Z. F.; Yao, M.-Y.; Zhu, F. F.; Song, Y. R.; Wang, M.-X, Xu, J.-P.; Fedorov, A. V.; Sun, Z. Spatial and energy distribution of topological edge states in single Bi (111) bilayer. Phys. Rev. Lett 2012, 109, 016801–016805.

    Article  Google Scholar 

  25. Hirahara, T.; Fukui, N.; Shirasawa, T.; Yamada, M.; Aitani, M.; Miyazaki, H.; Matsunami, M.; Kimura, S.; Takahashi, T.; Hasegawa, S. et al. Atomic and electronic structure of ultrathin Bi (111) films grown on Bi2Te2 (111) substrates: Evidence for a strain-induced topological phase transition. Phys. Rev. Lett 2012, 109, 227401.

    Article  Google Scholar 

  26. Fukui, N.; Hirahara, T.; Shirasawa, T.; Takahashi, T.; Kobayashi, K.; Hasegawa, S. Surface relaxation of topological insulators: Influence on the electronic structure. Phys. Rev. B 2012, 85, 115426.

    Article  Google Scholar 

  27. Wang, Z. F.; Yao, M.-Y.; Ming, W. M.; Miao, L.; Zhu, F. F.; Liu, C. H.; Gao, C. L.; Qian, D.; Jia, J.-F.; Liu, F. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions. Nat. Commun. 2013, 4, 1384.

    Article  Google Scholar 

  28. Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett 2010, 105, 036404.

    Google Scholar 

  29. Xu, S.-Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560–564.

    Article  Google Scholar 

  30. Sato, T.; Segawa, K.; Kosaka, K.; Souma, S.; Nakayama, K.; Eto, K.; Minami, T.; Ando, Y.; Takahashi, T. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nat. Phys. 2011, 7, 840–844.

    Article  Google Scholar 

  31. Niu, C. W.; Dai, Y.; Yu, L.; Guo, M.; Ma, Y. D.; Huang, B. B. Quantum anomalous Hall effect in doped ternary chalcogenide topological insulators TlBiTe2 and TlBiSe2. Appl. Phys. Lett. 2011, 99, 142502.

    Article  Google Scholar 

  32. Kresse, G.; Furthmü ller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  33. Kresse, G.; Furthmü ller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  34. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  35. Peng, Q.; Liang, C.; Ji, W.; De, S. A first principles investigation of the mechanical properties of g-TIN. Model. Numer. Sim. Mater. Sci. 2012, 2, 76–84.

    Google Scholar 

  36. Sahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

    Article  Google Scholar 

  37. Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett 2010, 105, 036404.

    Article  Google Scholar 

  38. Liu, C.-C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett 2011, 107, 076802.

    Article  Google Scholar 

  39. Li, X. R.; Dai, Y.; Ma, Y. D.; Huang, B. B. Electronic and magnetic properties of honeycomb transition metal monolayers: First-principles insights. Phys. Chem. Chem. Phys. 2014, 16, 13383–13389.

    Article  Google Scholar 

  40. Qian, X. F.; Fu, L.; Li, J. Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res. 2015, 8, 967–979.

    Article  Google Scholar 

  41. Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  42. Miao, M. S.; Yan, Q.; Van de Walle, C. G.; Lou, W. K.; Li, L. L.; Chang, K. Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well. Phys. Rev. Lett 2012, 109, 186803.

    Article  Google Scholar 

  43. Crepaldi, A.; Moreschini, L.; Autès, G.; T ournier-Colletta, C.; Moser, S.; Virk, N.; Berger, H.; Bugnon, P.; Chang, Y. J.; Kern, K. et al. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett 2012, 109, 096803.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Dai, Y., Ma, Y. et al. Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Res. 8, 2954–2962 (2015). https://doi.org/10.1007/s12274-015-0800-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0800-4

Keywords

Navigation