Skip to main content
Log in

A new C=C embedded porphyrin sheet with superior oxygen reduction performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

C2 is a well-known pseudo-oxygen unit with an electron affinity of 3.4 eV. We show that it can exhibit metal-ion like behavior when embedded in a porphyrin sheet and form a metal-free two-dimensional material with superior oxygen reduction performance. Here, the positively charged C=C units are highly active for oxygen reduction reaction (ORR) via dissociation pathways with a small energy barrier of 0.09 eV, much smaller than that of other non-platinum group metal (non-PGM) ORR catalysts. Using a microkinetics-based model, we calculated the partial current density to be 3.0 mA/cm2 at 0.65 V vs. a standard hydrogen electrode (SHE), which is comparable to that of the state-of-the-art Pt/C catalyst. We further confirm that the C=C embedded porphyrin sheet is dynamically and thermally stable with a quasi-direct band gap of 1.14 eV. The superior catalytic performance and geometric stability make the metal-free C=C porphyrin sheet ideal for fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabis, A.; Rodriguez, P.; Schmidt, T.J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.

    Article  Google Scholar 

  2. Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

    Article  Google Scholar 

  3. Ramírez-Caballero, G.E.; Balbuena, P.B. Dissolutionresistant core-shell materials for acid medium oxygen reduction electrocatalysts. J. Phys. Chem. Lett. 2010, 1, 724–728.

    Article  Google Scholar 

  4. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    Article  Google Scholar 

  5. Cheng, F.Y.; Shen, J.; Peng, B.; Pan, Y.D.; Tao, Z.L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

    Article  Google Scholar 

  6. Gong, K.P.; Du, F.; Xia, Z.H.; Durstock, M.; Dai, L.M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  7. Qu, L.T.; Liu, Y.; Baek, J.-B.; Dai, L.M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

  8. Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.J.; Zhang, W.M.; Zhu, Z.H.; Smith, S.C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 0116–20119.

    Google Scholar 

  9. Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.

    Article  Google Scholar 

  10. Grumelli, D.; Wurster, B.; Stepanow, S.; Kern, K. Bioinspired nanocatalysts for the oxygen reduction reaction. Nat. Commun. 2013, 4, 2904.

    Article  Google Scholar 

  11. Yuan, S.W.; Shui, J.-L.; Grabstanowicz, L.; Chen, C.; Commet, S.; Reprogle, B.; Xu, T.; Yu, L.P.; Liu, D.-J. A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin. Angew. Chem., Int. Ed. 2013, 52, 8349–8353.

    Article  Google Scholar 

  12. Xiang, Z.H.; Xue, Y.H.; Cao, D.P.; Huang, L.; Chen, J.-F.; Dai, L.M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.

    Article  Google Scholar 

  13. Li, W.M.; Yu, A.P.; Higgins, D.C.; Llanos, B.G.; Chen, Z.W. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 17056–17058.

    Article  Google Scholar 

  14. Liu, Z.Y.; Zhang, G.X.; Lu, Z.Y.; Jin, X.Y.; Chang, Z.; Sun, X.M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  15. Han, C.L.; Wang, S.P.; Wang, J.; Li, M.M.; Deng, J.; Li, H.R.; Wang, Y. Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 2014, 7, 1809–1819.

    Article  Google Scholar 

  16. Zhang, L.P.; Xia, Z.H. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 2011, 115, 11170–11176.

    Article  Google Scholar 

  17. Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348–6354.

    Article  Google Scholar 

  18. Jahan, M.; Bao, Q.L.; Loh, K.P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713.

    Article  Google Scholar 

  19. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

    Article  Google Scholar 

  20. Uosaki, K.; Elumalai, G.; Noguchi, H.; Masuda, T.; Lyalin, A.; Nakayama, A.; Taketsugu, T. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: Theoretical suggestion and experimental proof. J. Am. Chem. Soc. 2014, 136, 6542–6545.

    Article  Google Scholar 

  21. Lyalin, A.; Nakayama, A.; Uosaki, K.; Taketsugu, T. Functionalization of monolayer h-BN by a metal support for the oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 21359–21370.

    Article  Google Scholar 

  22. Chai, G.-L.; Hou, Z.F.; Shu, D.-J.; Ikeda, T.; Terakura, K. Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: Stone–Wales defect and curvature effect. J. Am. Chem. Soc. 2014, 136, 13629–13640.

    Article  Google Scholar 

  23. Saidi, W.A. Oxygen reduction electrocatalysis using Ndoped graphene quantum-dots. J. Phys. Chem. Lett. 2013, 4, 4160–4165.

    Article  Google Scholar 

  24. Gao, F.; Zhao, G.-L.; Yang, S.Z. Catalytic reactions on the open-edge sites of nitrogen-doped carbon nanotubes as cathode catalyst for hydrogen fuel cells. ACS Catal. 2014, 4, 1267–1273.

    Article  Google Scholar 

  25. Yu, L.; Pan, X.L.; Cao, X.M.; Hu, P.; Bao, X.H. Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. J. Catal. 2011, 282, 183–190.

    Article  Google Scholar 

  26. Ikeda, T.; Boero, M.; Huang, S.-F.; Terakura, K.; Oshima, M.; Ozaki, J. Carbon alloy catalysts: Active sites for oxygen reduction reaction. J. Phys. Chem. C 2008, 112, 14706–14709.

    Article  Google Scholar 

  27. Wang, D.-W.; Su, D.S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

    Article  Google Scholar 

  28. Wang, X.X.; Yang, J.D.; Yin, H.J.; Song, R.; Tang, Z.Y. “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.

    Article  Google Scholar 

  29. Tang, H.J.; Yin, H.J.; Wang, J.Y.; Yang, N.L.; Wang, D.; Tang, Z.Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for highperformance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 5585–5589.

    Article  Google Scholar 

  30. Kattel, S.; Wang, G.F. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014, 5, 452–456.

    Article  Google Scholar 

  31. Vaid, T.P. A porphyrin with a C=C unit at its center. J. Am. Chem. Soc. 2011, 133, 15838–15841.

    Article  Google Scholar 

  32. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  33. Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

  34. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  35. Monkhorst, H.J.; Pack, J.D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  36. Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J.K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.

    Article  Google Scholar 

  37. Calle-Vallejo, F.; Martinez, J.I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643.

    Article  Google Scholar 

  38. Calle-Vallejo, F.; Martínez, J.I.; García-Lastra, J.M.; Mogensen, M.; Rossmeisl, J. Trends in stability of perovskite oxides. Angew. Chem., Int. Ed. 2010, 49, 7699–7701.

    Article  Google Scholar 

  39. Mills, G.; Jó nsson, H. Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett. 1994, 72, 1124–1127.

    Article  Google Scholar 

  40. Heyden, A.; Bell, A.T.; Keil, F.J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101.

    Article  Google Scholar 

  41. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  Google Scholar 

  42. Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  Google Scholar 

  43. Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” J.Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

    Article  Google Scholar 

  44. Frisch, M.J. T., G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. GAUSSIAN 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2010.

    Google Scholar 

  45. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

    Article  Google Scholar 

  46. Yang, J.R.; Shi, G.S.; Tu, Y.S.; Fang, H.P. High correlation between oxidation loci on graphene oxide. Angew. Chem., Int. Ed. 2014, 53, 10190–10194.

    Article  Google Scholar 

  47. Lü, K.; Zhou, J.; Zhou, L.; Wang, Q.; Sun, Q.; Jena, P. Scphthalocyanine sheet: Promising material for hydrogen storage. Appl. Phys. Lett. 2011, 99, 163104.

    Article  Google Scholar 

  48. Lü, K.; Zhou, J.; Zhou, L.; Chen, X.S.; Chan, S.H.; Sun, Q. Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets. J. Chem. Phys. 2012, 136, 234703.

    Article  Google Scholar 

  49. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

    Article  Google Scholar 

  50. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Selfconsistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654.

    Article  Google Scholar 

  51. Halgren, T.A. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232.

    Article  Google Scholar 

  52. Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746.

    Article  Google Scholar 

  53. Glendening, E.D. R., A.E.; Carpenter, J.E.; Weinhold, F. NBO, Version 3.1.

  54. Klod, S.; Kleinpeter, E. Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—Application in conformational and configurational analysis. J. Chem. Soc., Perkin Trans. 2 2001, 1893–1898.

    Google Scholar 

  55. von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.J.; van Eikema Hommes, N.J. R. Nucleus-independent chemical shifts:?? A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318.

    Article  Google Scholar 

  56. Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Article  Google Scholar 

  57. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

    Article  Google Scholar 

  58. King, B.T. Polycyclic hydrocarbons: Nanographenes do the twist. Nat. Chem. 2013, 5, 730–731.

    Article  Google Scholar 

  59. Ma, J.; Alfè, D.; Michaelides, A.; Wang, E.G. Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 2009, 80, 033407.

  60. Piazza, Z.A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

    Article  Google Scholar 

  61. Tang, H.; Ismail- Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.

    Article  Google Scholar 

  62. Penev, E.S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B.I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.

    Article  Google Scholar 

  63. Bader, R.F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928.

    Article  Google Scholar 

  64. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

    Article  Google Scholar 

  65. Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.

    Article  Google Scholar 

  66. Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.

    Article  Google Scholar 

  67. Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The electron localization function. Angew. Chem., Int. Ed. 1997, 36, 1808–1832.

    Article  Google Scholar 

  68. Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686.

    Article  Google Scholar 

  69. Nørskov, J.K.; Bligaard, T.; Hvolbæk, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C.H. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 2008, 37, 2163–2171.

    Article  Google Scholar 

  70. Janik, M.J.; Taylor, C.D.; Neurock, M. First-principles analysis of the initial electroreduction steps of oxygen over Pt(111). J. Electrochem. Soc. 2009, 156, B126–B135.

  71. Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J.K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.

    Article  Google Scholar 

  72. Keith, J.A.; Jacob, T. Theoretical studies of potentialdependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem., Int. Ed. 2010, 49, 9521–9525.

    Article  Google Scholar 

  73. Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L.B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M. et al. Universality in heterogeneous catalysis. J. Catal. 2002, 209, 275–278.

    Article  Google Scholar 

  74. Bligaard, T.; Nø rskov, J.K.; Dahl, S.; Matthiesen, J.; Christensen, C.H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.

    Article  Google Scholar 

  75. Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  76. Wu, P.; Du, P.; Zhang, H.; Cai, C.X. Graphyne as a promising metal-free electrocatalyst for oxygen reduction reactions in acidic fuel cells: ADFT study. J. Phys. Chem. C 2012, 116, 20472–20479.

    Google Scholar 

  77. Sha, Y.; Yu, T.H.; Liu, Y.; Merinov, B.V.; Goddard, W.A. Theoretical study of solvent effects on the platinum-catalyzed oxygen reduction reaction. J. Phys. Chem. Lett. 2010, 1, 856–861.

    Article  Google Scholar 

  78. Wei, G.-F.; Fang, Y.-H.; Liu, Z.-P. First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst. J. Phys. Chem. C 2012, 116, 12696–12705.

    Article  Google Scholar 

  79. Gokhale, A.A.; Kandoi, S.; Greeley, J.P.; Mavrikakis, M.; Dumesic, J.A. Molecular-level descriptions of surface chemistry in kinetic models using density functional theory. Chem. Eng. Sci. 2004, 59, 4679–4691.

    Article  Google Scholar 

  80. Greeley, J.; Stephens, I.E. L.; Bondarenko, A.S.; Johansson, T.P.; Hansen, H.A.; Jaramillo, T.F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J.K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  Google Scholar 

  81. Hansen, H.A.; Viswanathan, V.; Nørskov, J.K. Unifying kinetic and thermodynamic analysis of 2 e–and 4 e–reduction of oxygen on metal surfaces. J. Phys. Chem. C 2014, 118, 6706–6718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, S., Yu, J. et al. A new C=C embedded porphyrin sheet with superior oxygen reduction performance. Nano Res. 8, 2901–2912 (2015). https://doi.org/10.1007/s12274-015-0795-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0795-x

Keywords

Navigation