Nano Research

, Volume 8, Issue 9, pp 2901–2912 | Cite as

A new C=C embedded porphyrin sheet with superior oxygen reduction performance

  • Yawei Li
  • Shunhong Zhang
  • Jiabing Yu
  • Qian Wang
  • Qiang Sun
  • Puru Jena
Research Article

Abstract

C2 is a well-known pseudo-oxygen unit with an electron affinity of 3.4 eV. We show that it can exhibit metal-ion like behavior when embedded in a porphyrin sheet and form a metal-free two-dimensional material with superior oxygen reduction performance. Here, the positively charged C=C units are highly active for oxygen reduction reaction (ORR) via dissociation pathways with a small energy barrier of 0.09 eV, much smaller than that of other non-platinum group metal (non-PGM) ORR catalysts. Using a microkinetics-based model, we calculated the partial current density to be 3.0 mA/cm2 at 0.65 V vs. a standard hydrogen electrode (SHE), which is comparable to that of the state-of-the-art Pt/C catalyst. We further confirm that the C=C embedded porphyrin sheet is dynamically and thermally stable with a quasi-direct band gap of 1.14 eV. The superior catalytic performance and geometric stability make the metal-free C=C porphyrin sheet ideal for fuel cell applications.

Keywords

oxygen reduction reaction C=C porphyrin sheet density functional theory microkinetics modeling metal-free electrocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_795_MOESM1_ESM.pdf (1.7 mb)
Supplementary material, approximately 1.66 MB.

References

  1. [1]
    Rabis, A.; Rodriguez, P.; Schmidt, T.J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.CrossRefGoogle Scholar
  2. [2]
    Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.CrossRefGoogle Scholar
  3. [3]
    Ramírez-Caballero, G.E.; Balbuena, P.B. Dissolutionresistant core-shell materials for acid medium oxygen reduction electrocatalysts. J. Phys. Chem. Lett. 2010, 1, 724–728.CrossRefGoogle Scholar
  4. [4]
    Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.CrossRefGoogle Scholar
  5. [5]
    Cheng, F.Y.; Shen, J.; Peng, B.; Pan, Y.D.; Tao, Z.L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.CrossRefGoogle Scholar
  6. [6]
    Gong, K.P.; Du, F.; Xia, Z.H.; Durstock, M.; Dai, L.M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.CrossRefGoogle Scholar
  7. [7]
    Qu, L.T.; Liu, Y.; Baek, J.-B.; Dai, L.M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  8. [8]
    Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.J.; Zhang, W.M.; Zhu, Z.H.; Smith, S.C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 0116–20119.Google Scholar
  9. [9]
    Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.CrossRefGoogle Scholar
  10. [10]
    Grumelli, D.; Wurster, B.; Stepanow, S.; Kern, K. Bioinspired nanocatalysts for the oxygen reduction reaction. Nat. Commun. 2013, 4, 2904.CrossRefGoogle Scholar
  11. [11]
    Yuan, S.W.; Shui, J.-L.; Grabstanowicz, L.; Chen, C.; Commet, S.; Reprogle, B.; Xu, T.; Yu, L.P.; Liu, D.-J. A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin. Angew. Chem., Int. Ed. 2013, 52, 8349–8353.CrossRefGoogle Scholar
  12. [12]
    Xiang, Z.H.; Xue, Y.H.; Cao, D.P.; Huang, L.; Chen, J.-F.; Dai, L.M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.CrossRefGoogle Scholar
  13. [13]
    Li, W.M.; Yu, A.P.; Higgins, D.C.; Llanos, B.G.; Chen, Z.W. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 17056–17058.CrossRefGoogle Scholar
  14. [14]
    Liu, Z.Y.; Zhang, G.X.; Lu, Z.Y.; Jin, X.Y.; Chang, Z.; Sun, X.M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRefGoogle Scholar
  15. [15]
    Han, C.L.; Wang, S.P.; Wang, J.; Li, M.M.; Deng, J.; Li, H.R.; Wang, Y. Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 2014, 7, 1809–1819.CrossRefGoogle Scholar
  16. [16]
    Zhang, L.P.; Xia, Z.H. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 2011, 115, 11170–11176.CrossRefGoogle Scholar
  17. [17]
    Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348–6354.CrossRefGoogle Scholar
  18. [18]
    Jahan, M.; Bao, Q.L.; Loh, K.P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713.CrossRefGoogle Scholar
  19. [19]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.CrossRefGoogle Scholar
  20. [20]
    Uosaki, K.; Elumalai, G.; Noguchi, H.; Masuda, T.; Lyalin, A.; Nakayama, A.; Taketsugu, T. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: Theoretical suggestion and experimental proof. J. Am. Chem. Soc. 2014, 136, 6542–6545.CrossRefGoogle Scholar
  21. [21]
    Lyalin, A.; Nakayama, A.; Uosaki, K.; Taketsugu, T. Functionalization of monolayer h-BN by a metal support for the oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 21359–21370.CrossRefGoogle Scholar
  22. [22]
    Chai, G.-L.; Hou, Z.F.; Shu, D.-J.; Ikeda, T.; Terakura, K. Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: Stone–Wales defect and curvature effect. J. Am. Chem. Soc. 2014, 136, 13629–13640.CrossRefGoogle Scholar
  23. [23]
    Saidi, W.A. Oxygen reduction electrocatalysis using Ndoped graphene quantum-dots. J. Phys. Chem. Lett. 2013, 4, 4160–4165.CrossRefGoogle Scholar
  24. [24]
    Gao, F.; Zhao, G.-L.; Yang, S.Z. Catalytic reactions on the open-edge sites of nitrogen-doped carbon nanotubes as cathode catalyst for hydrogen fuel cells. ACS Catal. 2014, 4, 1267–1273.CrossRefGoogle Scholar
  25. [25]
    Yu, L.; Pan, X.L.; Cao, X.M.; Hu, P.; Bao, X.H. Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. J. Catal. 2011, 282, 183–190.CrossRefGoogle Scholar
  26. [26]
    Ikeda, T.; Boero, M.; Huang, S.-F.; Terakura, K.; Oshima, M.; Ozaki, J. Carbon alloy catalysts: Active sites for oxygen reduction reaction. J. Phys. Chem. C 2008, 112, 14706–14709.CrossRefGoogle Scholar
  27. [27]
    Wang, D.-W.; Su, D.S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.CrossRefGoogle Scholar
  28. [28]
    Wang, X.X.; Yang, J.D.; Yin, H.J.; Song, R.; Tang, Z.Y. “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.CrossRefGoogle Scholar
  29. [29]
    Tang, H.J.; Yin, H.J.; Wang, J.Y.; Yang, N.L.; Wang, D.; Tang, Z.Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for highperformance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 5585–5589.CrossRefGoogle Scholar
  30. [30]
    Kattel, S.; Wang, G.F. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014, 5, 452–456.CrossRefGoogle Scholar
  31. [31]
    Vaid, T.P. A porphyrin with a C=C unit at its center. J. Am. Chem. Soc. 2011, 133, 15838–15841.CrossRefGoogle Scholar
  32. [32]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  33. [33]
    Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.Google Scholar
  34. [34]
    Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  35. [35]
    Monkhorst, H.J.; Pack, J.D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  36. [36]
    Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J.K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.CrossRefGoogle Scholar
  37. [37]
    Calle-Vallejo, F.; Martinez, J.I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643.CrossRefGoogle Scholar
  38. [38]
    Calle-Vallejo, F.; Martínez, J.I.; García-Lastra, J.M.; Mogensen, M.; Rossmeisl, J. Trends in stability of perovskite oxides. Angew. Chem., Int. Ed. 2010, 49, 7699–7701.CrossRefGoogle Scholar
  39. [39]
    Mills, G.; Jó nsson, H. Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett. 1994, 72, 1124–1127.CrossRefGoogle Scholar
  40. [40]
    Heyden, A.; Bell, A.T.; Keil, F.J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101.CrossRefGoogle Scholar
  41. [41]
    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.CrossRefGoogle Scholar
  42. [42]
    Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.CrossRefGoogle Scholar
  43. [43]
    Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” J.Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.CrossRefGoogle Scholar
  44. [44]
    Frisch, M.J. T., G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. GAUSSIAN 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2010.Google Scholar
  45. [45]
    Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.CrossRefGoogle Scholar
  46. [46]
    Yang, J.R.; Shi, G.S.; Tu, Y.S.; Fang, H.P. High correlation between oxidation loci on graphene oxide. Angew. Chem., Int. Ed. 2014, 53, 10190–10194.CrossRefGoogle Scholar
  47. [47]
    Lü, K.; Zhou, J.; Zhou, L.; Wang, Q.; Sun, Q.; Jena, P. Scphthalocyanine sheet: Promising material for hydrogen storage. Appl. Phys. Lett. 2011, 99, 163104.CrossRefGoogle Scholar
  48. [48]
    Lü, K.; Zhou, J.; Zhou, L.; Chen, X.S.; Chan, S.H.; Sun, Q. Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets. J. Chem. Phys. 2012, 136, 234703.CrossRefGoogle Scholar
  49. [49]
    Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRefGoogle Scholar
  50. [50]
    Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Selfconsistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654.CrossRefGoogle Scholar
  51. [51]
    Halgren, T.A. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232.CrossRefGoogle Scholar
  52. [52]
    Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746.CrossRefGoogle Scholar
  53. [53]
    Glendening, E.D. R., A.E.; Carpenter, J.E.; Weinhold, F. NBO, Version 3.1.Google Scholar
  54. [54]
    Klod, S.; Kleinpeter, E. Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—Application in conformational and configurational analysis. J. Chem. Soc., Perkin Trans. 2 2001, 1893–1898.Google Scholar
  55. [55]
    von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.J.; van Eikema Hommes, N.J. R. Nucleus-independent chemical shifts:?? A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318.CrossRefGoogle Scholar
  56. [56]
    Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.CrossRefGoogle Scholar
  57. [57]
    Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.CrossRefGoogle Scholar
  58. [58]
    King, B.T. Polycyclic hydrocarbons: Nanographenes do the twist. Nat. Chem. 2013, 5, 730–731.CrossRefGoogle Scholar
  59. [59]
    Ma, J.; Alfè, D.; Michaelides, A.; Wang, E.G. Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 2009, 80, 033407.Google Scholar
  60. [60]
    Piazza, Z.A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.CrossRefGoogle Scholar
  61. [61]
    Tang, H.; Ismail- Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.CrossRefGoogle Scholar
  62. [62]
    Penev, E.S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B.I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.CrossRefGoogle Scholar
  63. [63]
    Bader, R.F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928.CrossRefGoogle Scholar
  64. [64]
    Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.CrossRefGoogle Scholar
  65. [65]
    Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.CrossRefGoogle Scholar
  66. [66]
    Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.CrossRefGoogle Scholar
  67. [67]
    Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The electron localization function. Angew. Chem., Int. Ed. 1997, 36, 1808–1832.CrossRefGoogle Scholar
  68. [68]
    Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686.CrossRefGoogle Scholar
  69. [69]
    Nørskov, J.K.; Bligaard, T.; Hvolbæk, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C.H. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 2008, 37, 2163–2171.CrossRefGoogle Scholar
  70. [70]
    Janik, M.J.; Taylor, C.D.; Neurock, M. First-principles analysis of the initial electroreduction steps of oxygen over Pt(111). J. Electrochem. Soc. 2009, 156, B126–B135.Google Scholar
  71. [71]
    Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J.K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.CrossRefGoogle Scholar
  72. [72]
    Keith, J.A.; Jacob, T. Theoretical studies of potentialdependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem., Int. Ed. 2010, 49, 9521–9525.CrossRefGoogle Scholar
  73. [73]
    Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L.B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M. et al. Universality in heterogeneous catalysis. J. Catal. 2002, 209, 275–278.CrossRefGoogle Scholar
  74. [74]
    Bligaard, T.; Nø rskov, J.K.; Dahl, S.; Matthiesen, J.; Christensen, C.H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.CrossRefGoogle Scholar
  75. [75]
    Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  76. [76]
    Wu, P.; Du, P.; Zhang, H.; Cai, C.X. Graphyne as a promising metal-free electrocatalyst for oxygen reduction reactions in acidic fuel cells: ADFT study. J. Phys. Chem. C 2012, 116, 20472–20479.Google Scholar
  77. [77]
    Sha, Y.; Yu, T.H.; Liu, Y.; Merinov, B.V.; Goddard, W.A. Theoretical study of solvent effects on the platinum-catalyzed oxygen reduction reaction. J. Phys. Chem. Lett. 2010, 1, 856–861.CrossRefGoogle Scholar
  78. [78]
    Wei, G.-F.; Fang, Y.-H.; Liu, Z.-P. First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst. J. Phys. Chem. C 2012, 116, 12696–12705.CrossRefGoogle Scholar
  79. [79]
    Gokhale, A.A.; Kandoi, S.; Greeley, J.P.; Mavrikakis, M.; Dumesic, J.A. Molecular-level descriptions of surface chemistry in kinetic models using density functional theory. Chem. Eng. Sci. 2004, 59, 4679–4691.CrossRefGoogle Scholar
  80. [80]
    Greeley, J.; Stephens, I.E. L.; Bondarenko, A.S.; Johansson, T.P.; Hansen, H.A.; Jaramillo, T.F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J.K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.CrossRefGoogle Scholar
  81. [81]
    Hansen, H.A.; Viswanathan, V.; Nørskov, J.K. Unifying kinetic and thermodynamic analysis of 2 e–and 4 e–reduction of oxygen on metal surfaces. J. Phys. Chem. C 2014, 118, 6706–6718.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yawei Li
    • 1
  • Shunhong Zhang
    • 2
  • Jiabing Yu
    • 1
  • Qian Wang
    • 2
  • Qiang Sun
    • 1
    • 2
    • 3
  • Puru Jena
    • 3
  1. 1.Department of Materials Science and EngineeringPeking UniversityBeijingChina
  2. 2.Center for Applied Physics and TechnologyPeking UniversityBeijingChina
  3. 3.Department of PhysicsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations