Ag nanoparticle/polymer composite barcode nanorods

Abstract

We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag+. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Huang, X. N.; Huang, G.; Zhang, S. R.; Sagiyama, K.; Togao, O.; Ma, X. P.; Wang, Y. G.; Li, Y.; Soesbe, T. C.; Sumer, B. D. et al. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew. Chem., Int. Ed., 2013, 52 8074–8078.

    Article  Google Scholar 

  2. [2]

    Wilson, R.; Cossins, A. R.; Spiller, D. G. Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem., Int. Ed., 2006, 45 6104–6017.

    Article  Google Scholar 

  3. [3]

    Finkel, N. H.; Lou, X. H.; Wang, C. Y.; He, L. Barcoding the microworld. Anal. Chem., 2004, 76 352A–359A.

  4. [4]

    Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantumdot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 2001, 19 631–635.

    Article  Google Scholar 

  5. [5]

    Pregibon, D. C.; Toner, M.; Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science, 2007, 315 1393–1396.

    Article  Google Scholar 

  6. [6]

    Gershon, D. Microarray technology: An array of opportunities. Nature, 2002, 416 885–891.

    Article  Google Scholar 

  7. [7]

    Nicewarner-Peña, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Peña, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes. Science, 2001, 294 137–141.

    Article  Google Scholar 

  8. [8]

    Birtwell, S.; Morgan, H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol., 2009, 1 345–362.

    Article  Google Scholar 

  9. [9]

    Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 2008, 37 885–897.

    Article  Google Scholar 

  10. [10]

    Zhang, Y.; Wang, H.; Nie, J. F.; Zhou, H.; Shen, G. L.; Yu, R. Q. Mussel-inspired fabrication of encoded polymer films for electrochemical identification. Electrochem. Commun., 2009, 11 1936–1939.

    Article  Google Scholar 

  11. [11]

    Stoermer, R. L.; Cederquist, K. B.; McFarland, S. K.; Sha, M. Y.; Penn, S. G.; Keating, C. D. Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. J. Am. Chem. Soc., 2006, 128 16892–16903.

    Article  Google Scholar 

  12. [12]

    Qin, L. D.; Banholzer, M. J.; Millstone, J. E.; Mirkin, C. A. Nanodisk codes. Nano Lett., 2007, 7 3849–3853.

    Article  Google Scholar 

  13. [13]

    Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins. Science, 2003, 301 1884–1886.

    Article  Google Scholar 

  14. [14]

    Tok, J. B.-H.; Chuang, F. Y. S.; Kao, M. C.; Rose, K. A.; Pannu, S. S.; Sha, M. Y.; Chakarova, G.; Penn, S. G.; Dougherty, G. M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem., Int. Ed., 2006, 45 6900–6904.

    Article  Google Scholar 

  15. [15]

    Eastman, P. S.; Ruan, W. M.; Doctolero, M.; Nuttall, R.; de Feo, G.; Park, J. S.; Chu, J. S. F.; Cooke, P.; Gray, J. W.; Li, S. et al. Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett., 2006, 6 1059–1064.

    Google Scholar 

  16. [16]

    Wang, J. Barcoded metal nanowires. J. Mater. Chem., 2008, 18 4017–4020.

    Article  Google Scholar 

  17. [17]

    Zhao, Y. J.; Shum, H. C.; Chen, H. S.; Adams, L. L. A.; Gu, Z. Z.; Weitz, D. A. Microfluidic generation of multifunctional quantum dot barcode particles. J. Am. Chem. Soc., 2011, 133 8790–8793.

    Article  Google Scholar 

  18. [18]

    Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth. J. Am. Chem. Soc., 2008, 130 2940–2941.

    Article  Google Scholar 

  19. [19]

    Rauf, S.; Glidle, A.; Cooper, J. M. Production of quantum dot barcodes using biological self-assembly. Adv. Mater., 2009, 21 4020–4024.

    Article  Google Scholar 

  20. [20]

    Battersby, B. J.; Bryant, D.; Meutermans, W.; Matthews, D.; Smythe, M. L.; Trau, M. Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc., 2000, 122 2138–2139.

    Article  Google Scholar 

  21. [21]

    Kuang, M.; Wang, D. Y.; Bao, H. B.; Gao, M. Y.; Mö hwald, H.; Jiang, M. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater., 2005, 17 267–270.

    Article  Google Scholar 

  22. [22]

    Dejneka, M. J.; Streltsov, A.; Pal, S.; Frutos, A. G.; Powell, C. L.; Yost, K.; Yuen, P. K.; Müller, U.; Lahiri, J. Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. USA, 2003, 100 389–393.

    Article  Google Scholar 

  23. [23]

    Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hardtemplate synthetic methods. Angew. Chem., Int. Ed., 2006, 45 2672–2692.

    Article  Google Scholar 

  24. [24]

    Sattayasamitsathit, S.; Burdick, J.; Bash, R.; Kanatharana, P.; Thavarungkul, P.; Wang, J. Alloy nanowires barcodes based on nondestructive X-ray fluorescence readout. Anal. Chem., 2007, 79 7571–7575.

    Article  Google Scholar 

  25. [25]

    Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis, 2006, 18 533–550.

    Article  Google Scholar 

  26. [26]

    Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano, 2010, 4 4350–4360.

    Article  Google Scholar 

  27. [27]

    Zhao, Y. J.; Cheng, Y.; Shang, L. R.; Wang, J.; Xie, Z. Y.; Gu, Z. Z. Microfluidic synthesis of barcode particles for multiplex assays. Small, 2015, 11 151–174.

    Article  Google Scholar 

  28. [28]

    Zhang, Y. H.; Zhang, L. X.; Deng, R. R.; Tian, J.; Zong, Y.; Jin, D. Y.; Liu, X. G. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc., 2014, 136 4893–4896.

    Article  Google Scholar 

  29. [29]

    Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.

    Article  Google Scholar 

  30. [30]

    Service, R. F. Solar energy. Can the upstarts top silicon? Science, 2008, 319 718–720.

    Google Scholar 

  31. [31]

    Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater., 2010, 22 4249–4269.

    Article  Google Scholar 

  32. [32]

    Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater., 2010, 20 3411–3424.

    Article  Google Scholar 

  33. [33]

    Kim, Y. W.; Lee, D. K.; Lee, K. J.; Min, B. R.; Kim, J. H. In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. J. Polym. Sci., Part B: Polym. Phys., 2007, 45 1283–1290.

    Article  Google Scholar 

  34. [34]

    Chen, M. J.; Zhao, Y. N.; Yang, W. T.; Yin, M. Z. UVirradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial. Langmuir, 2013, 29 16018–16024.

    Article  Google Scholar 

  35. [35]

    Cocca, M.; D’ Orazio, L. Novel silver/polyurethane nanocomposite by in situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behavior. J. Polym. Sci., Part B: Polym. Phys., 2008, 46 344–350.

    Article  Google Scholar 

  36. [36]

    Gupta, S.; Uhlmann, P.; Agrawal, M.; Chapuis, S.; Oertel, U.; Stamm, M. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules, 2008, 41 2874–2879.

    Article  Google Scholar 

  37. [37]

    Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B, 1999, 103 9533–9539.

    Article  Google Scholar 

  38. [38]

    Deshmukh, R. D.; Composto, R. J. Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem. Mater., 2007, 19 745–754.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junhu Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, T., Shen, H. et al. Ag nanoparticle/polymer composite barcode nanorods. Nano Res. 8, 2871–2880 (2015). https://doi.org/10.1007/s12274-015-0792-0

Download citation

Keywords

  • colloidal lithography
  • nanoparticle/polymer composites
  • nanorod
  • barcode