Skip to main content
Log in

High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlling the strain in two-dimensional (2D) materials is an interesting avenue to tailor the mechanical properties of nanoelectromechanical systems. Here, we demonstrate a technique to fabricate ultrathin tantalum oxide nanomechanical resonators with large stress by the laser oxidation of nano-drumhead resonators composed of tantalum diselenide (TaSe2), a layered 2D material belonging to the metal dichalcogenides. Before the study of their mechanical properties with a laser interferometer, we verified the oxidation and crystallinity of the freely suspended tantalum oxide using high-resolution electron microscopy. We demonstrate that the stress of tantalum oxide resonators increases by 140 MPa (with respect to pristine TaSe2 resonators), which causes an enhancement in the quality factor (14 times larger) and resonance frequency (9 times larger) of these resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adiga, V.P.; Ilic, B.; Barton, R.A.; Wilson- Rae, I.; Craighead, H.G.; Parpia, J.M. Modal dependence of dissipation in silicon nitride drum resonators. Appl. Phys. Lett 2011, 99, 253103.

    Article  Google Scholar 

  2. Wilson-Rae, I.; Barton, R.A.; Verbridge, S.S.; Southworth, D.R.; Ilic, B.; Craighead, H.G.; Parpia, J.M. High-Q nanomechanics via destructive interference of elastic waves. Phys. Rev. Lett 2011, 106, 047205.

    Article  Google Scholar 

  3. Singh, V.; Sengupta, S.; Solanki, H.S.; Dhall, R.; Allain, A.; Dhara, S.; Pant, P.; Deshmukh, M.M. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 2010, 21, 165204.

    Article  Google Scholar 

  4. Koenig, S.P.; Wang, L.D.; Pellegrino, J.; Bunch, J.S. Selective molecular sieving through porous graphene. Nat. Nanotechnol 2012, 7, 728–732.

    Article  Google Scholar 

  5. Pérez Garza, H.H.; Kievit, E.W.; Schneider, G.F.; Staufer, U. Controlled, reversible, and nondestructive generation of uniaxial extreme strains (<10%) in graphene. Nano Lett 2014, 14, 4107–4113.

    Article  Google Scholar 

  6. Zalalutdinov, M.K.; Robinson, J.T.; Junkermeier, C.E.; Culbertson, J.C.; Reinecke, T.L.; Stine, R.; Sheehan, P.E.; Houston, B.H.; Snow, E.S. Engineering graphene mechanical systems. Nano Lett 2012, 12, 4212–4218.

    Article  Google Scholar 

  7. Unterreithmeier, Q.P.; Faust, T.; Kotthaus, J.P. Damping of nanomechanical resonators. Phys. Rev. Lett 2010, 105, 027205.

    Article  Google Scholar 

  8. Castellanos-Gomez, A.; Navarro-Moratalla, E.; Mokry, G.; Quereda, J.; Pinilla-Cienfuegos, E.; Agraït, N.; van der Zant, H.S.J.; Coronado, E.; Steele, G.A.; Rubio-Bollinger, G. Fast and reliable identification of atomically thin layers of TaSe2 crystals. Nano Res 2013, 6, 191–199.

    Article  Google Scholar 

  9. Castellanos-Gomez, A.; van Leeuwen, R.; Buscema, M.; van der Zant, H.S.J.; Steele, G.A.; Venstra, W.J. Single-layer MoS2 mechanical resonators. Adv. Mater 2013, 25, 6719–6723.

    Article  Google Scholar 

  10. Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.

    Article  Google Scholar 

  11. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 2014, 1, 011002.

    Article  Google Scholar 

  12. Yan, Z.; Jiang, C.; Pope, T.R.; Tsang, C.F.; Stickney, J.L.; Goli, P.; Renteria, J.; Salguero, T.T.; Balandin, A.A. Phonon and thermal properties of exfoliated TaSe2 thin films. J. Appl. Phys 2013, 114, 204301.

    Google Scholar 

  13. Hummel, H.-U.; Fackler, R.; Remmert, P. Tantaloxide durch gasphasenhydrolyse, druckhydrolyse und transportreaktion aus 2H-TaS2: Synthesen von TTTa2O5 und TTa2O5 und kristallstruktur von TTa2O5. Chem. Ber. 1992, 551–556.

    Google Scholar 

  14. Terao, N. Structure des oxides de tantale. Jpn. J. Appl. Phys 1967, 6, 21.

    Article  Google Scholar 

  15. Moser, R. Single-crystal growth and polymorphy of Nb2O5 and Ta2O5. Schweiz. Mineral. Petrogr. Mitt 1965, 45, 38–101.

    Google Scholar 

  16. Dobal, P.S.; Katiyar, R.S.; Jiang, Y.; Guo, R.; Bhalla, A.S. Raman scattering study of a phase transition in tantalum pentoxide. J. Raman Spectrosc 2000, 31, 1061–1065.

    Article  Google Scholar 

  17. Lavik, M.T.; Medved, T.M.; Moore, G.D. Oxidation characteristics of MoS2 and other solid lubricants. ASLE Trans 1968, 11, 44–55.

    Article  Google Scholar 

  18. Castellanos-Gomez, A.; Barkelid, M.; Goossens, A.M.; Calado, V.E.; van der Zant, H.S.J.; Steele, G.A. Laserthinning of MoS5: On demand generation of a single-layer semiconductor. Nano Lett 2012, 12, 3187–3192.

    Article  Google Scholar 

  19. Wah, T. Vibration of circular plates. J. Acoust. Soc. Am 1962, 34, 275–281.

    Article  Google Scholar 

  20. Kang, J.; Tongay, S.; Zhou, J.; Li, J.B.; Wu, J.Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett 2013, 102, 012111.

    Article  Google Scholar 

  21. Barmatz, M. Elastic measurements in one and two-dimensional compounds. Ultrason. Symp. Proc 1974, 1–3, 461–467.

    Google Scholar 

  22. Barmatz, M.; Testardi, L.R.; Di Salvo, F.J. Elasticity measurements in the layered dichalcogenides TaSe2 and NbSe2. Phys. Rev. B 1975, 12, 4367.

    Article  Google Scholar 

  23. Chu, C.W.; Testardi, L.R.; Di Salvo, F.J.; Moncton, D.E. Pressure effects on the charge-density-wave phases in 2 H-TaSe2. Phys. Rev. B 1976, 14, 464.

    Article  Google Scholar 

  24. Feldman, J.L.; Vold, C.L.; Skelton, E.F.; Yu, S.C.; Spain, I.L. X-ray diffraction studies and thermal and elastic properties of 2 H-TaSe2. Phys. Rev. B 1978, 18, 5820.

    Article  Google Scholar 

  25. Abdullaev, N.A. Elastic properties of layered crystals. Phys. Solid State 2006, 48, 663–669.

    Article  Google Scholar 

  26. Dub, S.N.; Starikov, V.V. Elasticity module and hardness of niobium and tantalum anode oxide films. Funct. Mater 2007, 14, 347–350.

    Google Scholar 

  27. Tien, C.-L.; Lee, C.-C.; Chuang, K.-P.; Jaing, C.-C. Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry. J. Mod. Opt 2000, 47, 1681–1691.

    Google Scholar 

  28. Schmid, S.; Jensen, K.D.; Nielsen, K.H.; Boisen, A. Damping mechanisms in high-Q micro and nanomechanical string resonators. Phys. Rev. B 2011, 84, 165307.

    Article  Google Scholar 

  29. Yu, P.-L.; Purdy, T.P.; Regal, C.A. Control of material damping in high-Q membrane microresonators. Phys. Rev. Lett 2012, 108, 083603.

    Article  Google Scholar 

  30. Adiga, V.P.; Ilic, B.; Barton, R.A.; Wilson-Rae, I.; Craighead, H.G.; Parpia, J.M. Approaching intrinsic performance in ultra-thin silicon nitride drum resonators. J. Appl. Phys 2012, 112, 064323.

    Article  Google Scholar 

  31. Kermany, A.R.; Brawley, G.; Mishra, N.; Sheridan, E.; Bowen, W.P.; Iacopi, F. Microresonators with Q-factors over a million from highly stressed epitaxial silicon carbide on silicon. Appl. Phys. Lett 2014, 104, 081901.

    Article  Google Scholar 

  32. Lee, S.; Adiga, V.P.; Barton, R.A.; van der Zande, A.M.; Lee, G.-H.; Ilic, B.R.; Gondarenko, A.; Parpia, J.M.; Craighead, H.G.; Hone, J. Graphene metallization of highstress silicon nitride resonators for electrical integration. Nano Lett 2013, 13, 4275–4279.

    Article  Google Scholar 

  33. Lee, J.; Wang, Z.H.; He, K.L.; Shan, J.; Feng, P.X.-L. High frequency MoS2 nanomechanical resonators. ACS Nano 2013, 7, 6086–6091.

    Article  Google Scholar 

  34. Coronado, E.; Forment-Aliaga, A.; Navarro-Moratalla, E.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A. Nanofabrication of TaS2 conducting layers nanopatterned with Ta2O5 insulating regions via AFM. J. Mater. Chem. C 2013, 1, 7692–7694.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santiago J. Cartamil-Bueno, Peter G. Steeneken or Andres Castellanos-Gomez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartamil-Bueno, S.J., Steeneken, P.G., Tichelaar, F.D. et al. High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2 . Nano Res. 8, 2842–2849 (2015). https://doi.org/10.1007/s12274-015-0789-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0789-8

Keywords

Navigation