Skip to main content
Log in

All-carbon nanotube diode and solar cell statistically formed from macroscopic network

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at ∼20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, D. C.; Liu, Y. Q. The intramolecular junctions of carbon nanotubes. Adv. Mater. 2008, 20, 2815–2841.

    Article  Google Scholar 

  2. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  3. Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G. Carbon nanotube-silicon solar cells. Adv. Energy Mater. 2012, 2, 1043–1055.

    Article  Google Scholar 

  4. Kymakis, E. Photovoltaic devices based on carbon nanotubes and related structures. In Carbon Nanotubes and Related Structures; Guldi, D. M.; Martin, N., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2010; pp 291–303.

    Chapter  Google Scholar 

  5. Levitsky, I. A.; Euler, W. B.; Karachevtsev, V. A. Light energy conversion at carbon nanotubes-organic and inorganic interfaces: Photovoltaics, photodetectors and bolometers. In Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials.; Springer: London, 2012; pp 1–68.

    Chapter  Google Scholar 

  6. Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416.

    Article  Google Scholar 

  7. Pradhan, B.; Setyowati, K.; Liu, H. Y.; Waldeck, D. H.; Chen, J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 2008, 8, 1142–1146.

    Article  Google Scholar 

  8. Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.

    Article  Google Scholar 

  9. Glamazda, A. Y.; Karachevtsev, V. A.; Euler, W. B.; Levitsky, I. A. Achieving high mid-IR bolometric responsivity for anisotropic composite materials from carbon nanotubes and polymers. Adv. Funct. Mater. 2012, 22, 2177–2186.

    Article  Google Scholar 

  10. Glaeske. M.; Setaro, A. Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes. Nano Res. 2013, 6, 593–601.

    Article  Google Scholar 

  11. Massuyeay, F; Zhao, Y. C.; El Mel, A. A.; Yaya, A.; Geshier, F.; Gautron, E.; Lefrant, S.; Mevelec, J. Y.; Ewels, C.; Hsu, C. S. et al. Improve photoconductive properties of composite nanofibers based on aligned conjugated polymers and single-walled carbon nanotubes. Nano Res. 2013, 6, 149–158.

    Article  Google Scholar 

  12. Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Peng, L. M. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small 2013, 8, 1225–1236.

    Article  Google Scholar 

  13. Jung, Y.; Li, X. K.; Rajan, N. K.; Taylor, A. D.; Reed, M. A. Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 2013, 13, 95–99.

    Article  Google Scholar 

  14. Wadhwa, P.; Liu, B.; McCarthy, M. A.; Wu, Z. C.; Rinzler, A. G. Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett. 2010, 10, 5001–5005.

    Article  Google Scholar 

  15. Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901–1905.

    Article  Google Scholar 

  16. Ramuz, M. P.; Vosgueritchian, M.; Wei, P.; Wang, C. G.; Gao, Y. L.; Wu, Y. P.; Chen, Y. S.; Bao, Z. N. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano 2012, 6, 10384–10395.

    Article  Google Scholar 

  17. Bindl, D. J.; Wu, M. Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.

    Article  Google Scholar 

  18. Ong, P. L.; Euler, W. B.; Levitsky, I. A. Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 2010, 21, 105203.

    Article  Google Scholar 

  19. Del Gobbo, S.; Castrucci, P.; Fedele, S.; Riele, L.; Convertino, A.; Morbidoni, M.; De Nicola, F.; Scarselli, M.; Camilli, L.; De Crescenzi, M. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells. J. Mater. Chem. C 2013, 1, 6752–6758.

    Article  Google Scholar 

  20. Nasibulin, A. G.; Kaskela, A.; Mustonen, K.; Anisimov, A. S.; Ruiz, V.; Kivisto, S.; Rackauskas, S.; Timmermans, M. Y.; Pudas, M.; Aitchison, B. et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 2011, 5, 3214–3221.

    Article  Google Scholar 

  21. Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A. et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.

    Article  Google Scholar 

  22. Fuhrer, M. S.; Lim, A. K. L.; Shih, L.; Varadarajan, U.; Zettl, A.; McEuen, P. L. Transport through crossed nanotubes. Physica E 2000, 6, 868–871.

    Article  Google Scholar 

  23. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

    Book  Google Scholar 

  24. Abdula, D.; Shim, M. Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes. ACS Nano 2008, 2, 2154–2159.

    Article  Google Scholar 

  25. Rakhshani, A. E. Heterojunction properties of electrodeposited CdTe/CdS solar cells. J. Appl. Phys. 2001, 90, 4265–4271.

    Article  Google Scholar 

  26. Siddons, G. P.; Merchin, D.; Back, J. H.; Jeong, J. K.; Shim, M. Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 2004, 4, 927–931.

    Article  Google Scholar 

  27. Ham, M. H.; Paulus, G. L. C.; Lee, C. Y.; Song, C.; Kalantar-zadeh, K.; Choi, W.; Han, J. H.; Strano, M. S. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 2010, 4, 6251–6259.

    Article  Google Scholar 

  28. Moritsubo, S.; Murai, T.; Shimada, T.; Murakami, Y.; Chiashi, S.; Maruyama, S.; Kato, Y. K. Exciton diffusion in air-suspended single-walled carbon nanotubes. Phys. Rev. Lett. 2010, 104, 247402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Albert G. Nasibulin or Igor A. Levitsky.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasibulin, A.G., Funde, A.M., Anoshkin, I.V. et al. All-carbon nanotube diode and solar cell statistically formed from macroscopic network. Nano Res. 8, 2800–2809 (2015). https://doi.org/10.1007/s12274-015-0785-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0785-z

Keywords

Navigation