Skip to main content
Log in

Electrically tunable pore morphology in nanoporous gold thin films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoporous gold (np-Au) is an emerging nanostructured material that exhibits many desirable properties, including high electrical and thermal conductivity, high surface area-to-volume ratio, tunable pore morphology, well-established surface-binding chemistry, and compatibility with microfabrication. These features make np-Au a popular material for use in fuel cells, optical and electrical biosensors, drug delivery vehicles, neural electrode coatings, and as a model system for nanoscale mechanics. In each of its many applications, np-Au morphology plays an essential role in the overall device operation. Therefore, precise morphological control is necessary to attain optimal device performance. Traditionally, thermal treatment by furnaces and hot plates is used to obtain np-Au with self-similar but coarser morphologies. However, this approach lacks the ability to create different morphologies on a single substrate and requires high temperatures (> 250 °C) incompatible with most plastic substrates. Herein, we report electro-annealing as a novel method that permits control of the extent and location of pore coarsening on a single substrate in one fast treatment step. The electro-annealing entails much lower temperatures (< 150 °C) than traditional thermal treatment, putatively due to electrically assisted phenomena contributing to the thermally activated surface diffusion of gold atoms, responsible for coarsening. Overall, this approach is easily scaled to display multiple pore morphologies on a single chip, therefore enabling high-throughput screening of optimal nanostructures for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29.

    Article  Google Scholar 

  2. Suryanarayana, C. Recent developments in nanostructured materials. Adv. Eng. Mater. 2005, 7, 983–992.

    Article  Google Scholar 

  3. Zhang, X.; Xie, H. Q.; Fujii, M.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl. Phys. Lett. 2005, 86, 171912.

    Article  Google Scholar 

  4. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  Google Scholar 

  5. Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nano. 2010, 5, 391–400.

    Article  Google Scholar 

  6. Seker, E.; Reed, M.; Begley, M. Nanoporous gold: Fabrication, characterization, and applications. Materials 2009, 2, 2188–2215.

    Article  Google Scholar 

  7. Xiao, X. X.; Wang, M. E.; Li, H.; Si, P. C. One-step fabrication of bio-functionalized nanoporous gold/poly(3,4- ethylenedioxythiophene) hybrid electrodes for amperometric glucose sensing. Talanta 2013, 116, 1054–1059.

    Article  Google Scholar 

  8. Hu, K. C.; Lan, D. X.; Li, X. M.; Zhang, S. S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem. 2008, 80, 9124–9130.

    Article  Google Scholar 

  9. Seker, E.; Berdichevsky, Y.; Begley, M.; Reed, M.; Staley, K.; Yarmush, M. The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology 2010, 21, 125504.

    Article  Google Scholar 

  10. Seker, E.; Berdichevsky, Y.; Staley, K. J.; Yarmush, M. L. Microfabrication-compatible nanoporous gold foams as biomaterials for drug delivery. Adv. Healthc. Mater. 2012, 1, 172–176.

    Article  Google Scholar 

  11. Tan, Y. H.; Schallom, J. R.; Ganesh, N. V.; Fujikawa, K.; Demchenko, A. V.; Stine, K. J. Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy. Nanoscale 2011, 3, 3395–3407.

    Article  Google Scholar 

  12. Patel, J.; Radhakrishnan, L.; Zhao, B.; Uppalapati, B.; Daniels, R. C.; Ward, K. R.; Collinson, M. M. Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions. Anal. Chem. 2013, 85, 11610–11618.

    Article  Google Scholar 

  13. Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. Threedimensional hierarchical nanoporosity for ultrahigh power and excellent cyclability of electrochemical pseudocapacitors. Adv. Energy Mater. 2014, 4, 1301809.

    Article  Google Scholar 

  14. Kucheyev, S.; Hayes, J.; Biener, J.; Huser, T.; Talley, C.; Hamza, A. Surface-enhanced Raman scattering on nanoporous Au. Appl. Phys. Lett. 2006, 89, 053102–053104.

    Article  Google Scholar 

  15. Santos, G. M.; Zhao, F.; Zeng, J.; Shih, W. C. Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale 2014, 6, 5718–5724.

    Article  Google Scholar 

  16. Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.

    Article  Google Scholar 

  17. Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature co oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2006, 129, 42–43.

    Article  Google Scholar 

  18. Lee, D.; Wei, X.; Chen, X.; Zhao, M.; Jun, S.; Hone, J.; Herbert, E.; Oliver, W.; Kysar, J. Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scripta Mater. 2007, 56, 437–440.

    Article  Google Scholar 

  19. Jin, H. J.; Weissmüller, J. A material with electrically tunable strength and flow stress. Science 2011, 332, 1179–1182.

    Article  Google Scholar 

  20. Kurtulus, O.; Daggumati, P.; Seker, E. Molecular release from patterned nanoporous gold thin films. Nanoscale 2014, 6, 7062–7071.

    Article  Google Scholar 

  21. Senior, N.; Newman, R. Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 2006, 17, 2311–2316.

    Article  Google Scholar 

  22. Erlebacher, J. An atomistic description of dealloying. J. Electrochem. Soc. 2004, 151, C614–626.

    Article  Google Scholar 

  23. Hakamada, M.; Mabuchi, M. Thermal coarsening of nanoporous gold: Melting or recrystallization. J. Mater. Res. 2009, 24, 301–304.

    Article  Google Scholar 

  24. Fujita, T.; Qian, L. H.; Inoke, K.; Erlebacher, J.; Chen, M. W. Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 2008, 92, 251902.

    Article  Google Scholar 

  25. Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by lowtemperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007, 91, 083105.

    Article  Google Scholar 

  26. Detsi, E.; van de Schootbrugge, M.; Punzhin, S.; Onck, P. R.; De Hosson, J. T. M. On tuning the morphology of nanoporous gold. Scripta Mater. 2011, 64, 319–322.

    Article  Google Scholar 

  27. Dong, H.; Cao, X. D. Nanoporous gold thin film: Fabrication, structure evolution, and electrocatalytic activity. J. Phys. Chem. C 2008, 113, 603–609.

    Google Scholar 

  28. Hakamada, M.; Mabuchi, M. Microstructural evolution in nanoporous gold by thermal and acid treatments. Mater. Lett. 2008, 62, 483–486.

    Article  Google Scholar 

  29. Schade, L.; Franzka, S.; Mathieu, M.; Biener, M. M.; Biener, J.; Hartmann, N. Photothermal laser microsintering of nanoporous gold. Langmuir 2014, 30, 7190–7197.

    Article  Google Scholar 

  30. Klein, R. Laser Welding of Plastics. Wiley: 2011.

    Book  Google Scholar 

  31. Daggumati, P.; Kurtulus, O.; Chapman, C. A. R.; Dimlioglu, D.; Seker, E. Microfabrication of nanoporous gold patterns for cell–material interaction studies. 2013, e50678.

    Google Scholar 

  32. Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168.

    Article  Google Scholar 

  33. Hodge, A. M.; Biener, J.; Hayes, J. R.; Bythrow, P. M.; Volkert, C. A.; Hamza, A. V. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 2007, 55, 1343–1349.

    Article  Google Scholar 

  34. Li, R.; Sieradzki, K. Ductile–brittle transition in random porous Au. Phys. Rev. Lett. 1992, 68, 1168–1171.

    Article  Google Scholar 

  35. Erlebacher, J. Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 2011, 106, 225504.

    Article  Google Scholar 

  36. Trouwborst, M. L.; van der Molen, S. J.; van Wees, B. J. The role of joule heating in the formation of nanogaps by electromigration. J. App. Phys. 2006, 99, 114316.

    Article  Google Scholar 

  37. Hadeed, F. O.; Durkan, C. Controlled fabrication of 1–2 nm nanogaps by electromigration in gold and gold–palladium nanowires. Appl. Phys. Lett. 2007, 91, 123120.

    Article  Google Scholar 

  38. Fujita, T.; Okada, H.; Koyama, K.; Watanabe, K.; Maekawa, S.; Chen, M. W. Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys. Rev. Lett. 2008, 101, 166601.

    Article  Google Scholar 

  39. Liu, Z.; Searson, P. C. Single nanoporous gold nanowire sensors. J. Phys. Chem. B 2006, 110, 4318–4322.

    Article  Google Scholar 

  40. Munoz, R. C. Resistivity induced by a rough surface of thin gold films deposited on mica. J. Mol. Catal. A-Chem. 2005, 228, 163–175.

    Article  Google Scholar 

  41. Biener, M. M.; Biener, J.; Wichmann, A.; Wittstock, A.; Baumann, T. F.; Bäumer, M.; Hamza, A. V. Ald functionalized nanoporous gold: Thermal stability, mechanical properties, and ca talytic activity. Nano Lett. 2011, 11, 3085–3090.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkin Seker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, T.S., Seker, E. Electrically tunable pore morphology in nanoporous gold thin films. Nano Res. 8, 2188–2198 (2015). https://doi.org/10.1007/s12274-015-0726-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0726-x

Keywords

Navigation