Skip to main content

Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities

Abstract

Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction were synthesized via a facile template-free hydrothermal method. The TiO2 photocatalysts were flower-like microspheres with a 3 μm diameter. The base structure of the flower-like microspheres was a uniform nanowire with a 10 nm diameter. Anatase films were evenly coated onto the surface of the rutile TiO2 nanowires to form a one-dimensional core-shell base structure. This kind of one-dimensional heterojunction is conducive to the separation of charge carriers. In addition, the hierarchical TiO2 microspheres possessed a good mesoporous structure with a high specific surface area of 260 m2/g. Thus, the light scattering and utilization efficiency were improved in this structure. The photocatalysts exhibited better performance in both photocatalytic oxidation and reduction reactions. Moreover, the novel TiO2 photocatalysts displayed excellent stability in these reactions. This kind of hierarchical TiO2 structure has never been reported in the literature. The hierarchical structure and one-dimensional heterojunction were vital to the increase in quantum efficiency. Therefore, these hierarchical TiO2 photocatalysts have potential applications in the environmental and energy fields, such as in photocatalytic degradation, hydrogen production, Li-ion batteries, and dye-sensitized solar cells.

This is a preview of subscription content, access via your institution.

References

  1. Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.

    Article  Google Scholar 

  2. Chen, X. B.; Mao, S. S. Synthesis of titanium dioxide (TiO2) nanomaterials. J. Nanosci. Nanotechno. 2006, 6, 906–925.

    Article  Google Scholar 

  3. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials synthesis properties modifications and applications. Chem. Rev. 2007, 107, 2891–2959.

    Article  Google Scholar 

  4. Xiong, Z. G.; Zhao, X. S. Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 5754–5757.

    Article  Google Scholar 

  5. Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed. 2012, 51, 6223–6226.

    Article  Google Scholar 

  6. Hu, Y. H. A highly efficient photocatalyst-hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 2012, 51, 12410–12412.

    Article  Google Scholar 

  7. Yang, L. J.; Leung, W. W.-F. Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv. Mater. 2013, 25, 1792–1795.

    Article  Google Scholar 

  8. Wang, Z. Y.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124–4129.

    Article  Google Scholar 

  9. Kamat, P. V. TiO2 nanostructures: Recent physical chemistry advances. J. Phys. Chem. C 2012, 116, 11849–11851.

    Article  Google Scholar 

  10. Li, J.-G.; Ishigaki, T.; Sun, X. D. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 2007, 111, 4969–4976.

    Article  Google Scholar 

  11. Holmberg, J. P.; Johnson, A.-C.; Bergenholtz, J.; Abbas, Z.; Ahlberg, E. Near room temperature synthesis of monodisperse TiO2 nanoparticles: Growth mechanism. J. Phys. Chem. C 2013, 117, 5453–5461.

    Article  Google Scholar 

  12. Nonoyama, T.; Kinoshita, T.; Higuchi, M.; Nagata, K.; Tanaka, M.; Sato, K.; Kato, K. TiO2 synthesis inspired by biomineralization: Control of morphology, crystal phase, and light-use efficiency in a single process. J. Am. Chem. Soc. 2012, 134, 8841–8847.

    Article  Google Scholar 

  13. Wu, C. Y.; Yue, Y. H.; Deng, X. Y.; Hua, W. M.; Gao, Z. Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal. Today 2004, 93–95, 863–869.

    Article  Google Scholar 

  14. Zachariah, A.; Baiju, K. V.; Shukla, S.; Deepa, K. S.; James, J.; Warrier, K. G. K. Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 2008, 112, 11345–11356.

    Article  Google Scholar 

  15. Liu, Z. Y.; Zhang X. T.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: A heterogeneous nanostructure via layer-by-layer assembly. Langmuir 2007, 23, 10916–10919.

    Article  Google Scholar 

  16. Su, R.; Bechstein, R.; So, L.; Vang, R. T.; Sillassen, M.; Esbjornsson, B.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287–24292.

    Article  Google Scholar 

  17. van der Meulen, T.; Mattson, A.; Österlund, L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: Role of surface intermediates. J. Catal. 2007, 251, 131–144.

    Article  Google Scholar 

  18. Su, W. G.; Zhang, J.; Feng, Z. C.; Chen, T.; Ying, P. L.; Li, C. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 2008, 112, 7710–7716.

    Article  Google Scholar 

  19. Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 2008, 47, 1766–1769.

    Article  Google Scholar 

  20. Wu, H. B.; Hng, H. H.; Lou, X. W. Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity. Adv. Mater. 2012, 24, 2567–2571.

    Article  Google Scholar 

  21. Feng, X. J.; Zhai, J.; Jiang, L. The fabrication and switchable super hydrophobicity of TiO2 nanorod films. Angew. Chem. Int. Ed. 2005, 44, 5115–5118.

    Article  Google Scholar 

  22. Zhao, B.; Chen, F.; Huang, Q. W.; Zhang, J. L. Brookite TiO2 nanoflowers. Chem. Commun. 2009, 34, 5115–5117.

    Article  Google Scholar 

  23. Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y. M.; Dou, S. X. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 2011, 133, 19314–19317.

    Article  Google Scholar 

  24. Tang, Y. X.; Wee, P. X.; Lai, Y. K.; Wang, X. P.; Gong, D. G.; Kanhere, P. D.; Lim, T.-T.; Dong, Z. L.; Chen, Z. Hierarchical TiO2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity. J. Phys. Chem. C 2012, 116, 2772–2780.

    Article  Google Scholar 

  25. Ye, M. D.; Liu, H.-Y.; Lin, C. J.; Lin, Z. Q. Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 2013, 9, 312–321.

    Article  Google Scholar 

  26. Bian, Z. F.; Zhu, J.; Wang, J. G.; Xiao, S. X.; Nuckolls, C.; Li, H. X. Multitemplates for the hierarchical synthesis of diverse inorganic materials. J. Am. Chem. Soc. 2012, 134, 2325–2331.

    Article  Google Scholar 

  27. Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124–6130.

    Article  Google Scholar 

  28. Wang, W.; Ni, Y.; Lu, C. H.; Xu, Z. Z. Direct solvethermal growth of hierarchical porous TiO2 nanosheets with high photocatalytic activity. Mater. Lett. 2013, 111, 161–164.

    Article  Google Scholar 

  29. Cheng, P. F.; Du, S. S.; Cai, Y. X.; Liu, F. M.; Sun, P.; Zheng, J.; Lu, G. Y. Tripartite layered photoanode from hierarchical anatase TiO2 urchin-like spheres and P25: A candidate for enhanced efficiency dye sensitized solar cells. J. Phys. Chem. C 2013, 117, 24150–24156.

    Article  Google Scholar 

  30. Yang, M.-H.; Chen, P.-C.; Tsai, M.-C.; Chen, T.-T.; Chang, I.-C.; Chiu, H.-T.; Lee, C.-Y. Anatase and brookite TiO2 with various morphologies and their proposed building block. Crystengcomm 2014, 16, 441–447.

    Article  Google Scholar 

  31. Tan, X. H.; Qiang, P. F.; Zhang, D. D.; Cai, X.; Tan, S. Z.; Liu, P. Y.; Mai, W. J. Three-level hierarchical TiO2 nanostructure based high efficiency dye-sensitized solar cells. Crystengcomm 2014, 16, 1020–1025.

    Article  Google Scholar 

  32. Liu, M.; Piao, L. Y.; Wang, W. J. Fabrication and characteristics of three-dimensional flower-like titanate nanostructures. J. Nanosci. Nanotechno. Lett. 2010, 10, 7469–7472.

    Article  Google Scholar 

  33. Ge, M.; Li, J. W.; Liu, L.; Zhou, Z. Template-free synthesis and photocatalytic application of rutile TiO2 hierarchical nanostructures. Ind. Eng. Chem. Res. 2011, 50, 6681–6687.

    Article  Google Scholar 

  34. Bai, H. W.; Liu, Z. Y.; Sun, D. D. Hierarchically multifunctional TiO2 nano-thorn membrane for water purification. Chem. Commun. 2010, 46, 6542–6544.

    Article  Google Scholar 

  35. Sinha, A. K.; Jana, S.; Pande, S.; Sarkar, S.; Pradhan, M.; Basu, M.; Saha, S.; Pal, A.; Pal, T. New hydrothermal process for hierarchical TiO2 nanostructures. Crystengcomm 2009, 11, 1210–1212.

    Article  Google Scholar 

  36. Wu, D. P.; Zhu, F.; Li, J. M.; Dong, H.; Li, Q.; Jiang, K.; Xu, D. S. Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 11665–11671.

    Article  Google Scholar 

  37. Kondalkar, V. V.; Mali, S. S.; Mane, R. M.; Dandge, P. B.; Choudhury, S.; Hong, C. K.; Patil, P. S.; Patil, S. R.; Kim, J. H.; Bhosale, P. N. Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode: Identification of the degradation products and determination of the toxicity level. Ind. Eng. Chem. Res. 2014, 53, 18152–18162.

    Article  Google Scholar 

  38. Patil, P. B.; Mali, S. S.; Kondalkar, V. V.; Pawar, N. B.; Khot, K. V.; Hong, C. K.; Patil, P. S.; Bhosale, P. N. Single step hydrothermal synthesis of hierarchical TiO2 microflowers with radially assembled nanorods for enhanced photovoltaic performance. RSC Adv. 2014, 4, 47278–47286.

    Article  Google Scholar 

  39. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong S.-T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.

    Article  Google Scholar 

  40. Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J.; et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731–742.

    Article  Google Scholar 

  41. Song, H.; Jo, K.; Jung, B. Y.; Jung, G. Y. Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials. Nano Res. 2014, 7, 104–109.

    Article  Google Scholar 

  42. Shi, F. Z.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Preparation of core/shell structured rutile/anatase photocatalyst via vapor phase hydrolysis and its photocatalytic degradation of phenol and methylene blue. J. Am. Ceram. Soc. 2012, 95, 1927–1932.

    Article  Google Scholar 

  43. Ye, M. D.; Zheng, D. J; Lv, M. Q.; Chen, C.; Lin, C. J.; Lin, Z. Q. Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells. Adv. Mater. 2013, 25, 3039–3044.

    Article  Google Scholar 

  44. Sun, C. H.; Wang, N. X.; Zhou, S. Y.; Hu, X. J.; Zhou, S. Y.; Chen, P. Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film. Chem. Commun. 2008, 28, 3293–3295.

    Article  Google Scholar 

  45. Hsu, Y.-C.; Lin, H.-C.; Chen, C.-H.; Liao, Y.-T.; Yang, C.-M. Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications. J. Solid State Chem. 2010, 183, 1917–1924.

    Article  Google Scholar 

  46. Yu, X.; Xu, H. M.; Xin, L.; Wang, X. Y.; Liu, Y.; Zhou, X.; Li, B. J.; Zhao, W. X.; Shen, H. Synergistic assembly of nanoparticle aggregates and texture nanosheets into hierarchical TiO2 core-shell structures for enhanced light harvesting in dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 6175–6182.

    Article  Google Scholar 

  47. Xu, F.; Zhang, X. Y.; Wu, Y.; Wu, D. P.; Gao, Z. Y.; Jiang, K. Facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells. J. Alloy. Compd. 2013, 574, 227–232.

    Article  Google Scholar 

  48. Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 2007, 111, 6976–6982.

    Article  Google Scholar 

  49. Shi, J. Y.; Chen, J.; Feng, Z. C.; Chen, T.; Lian, Y. X.; Wang, X. L.; Li, C. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C 2007, 111, 693–699.

    Article  Google Scholar 

  50. Zhang, J. L.; Hu, Y.; Matsuoka, M.; Yamashita, H.; Minagawa, M.; Hidaka, H.; Anpo, M. Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. J. Phys. Chem. B 2001, 105, 8395–8398.

    Article  Google Scholar 

  51. Nair, R. G.; Paul, S.; Samdarshi, S. K. High UV/visible light activity of mixed phase titania: A generic mechanism. Sol. Energ. Mat. Sol. C 2011, 95, 1901–1907.

    Article  Google Scholar 

  52. Xie, Y. J.; Wu, Z. J.; Wu, Q.; Liu, M.; Piao, L. Y. Effect of different base structures on the performance of the hierarchical TiO2 photocatalysts. Catal. Today 2014, 225, 74–79.

    Article  Google Scholar 

  53. Bao, N.; Li, Y.; Wei, Z. T.; Yin, G. B.; Niu, J. J. Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties. J. Phys. Chem. C 2011, 115, 5708–5719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyu Piao.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhang, X., Ma, P. et al. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 8, 2092–2101 (2015). https://doi.org/10.1007/s12274-015-0720-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0720-3

Keywords

  • one-dimensional heterojunction
  • TiO2
  • photocatalytic activity