Skip to main content
Log in

Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-purity straight and discrete multiwalled boron nitride nanotubes (BNNTs) were grown via a boron oxide vapor reaction with ammonia using LiNO3 as a promoter. Only a trace amount of boron oxide was detected as an impurity in the BNNTs by energy-dispersive X-ray (EDX) and Raman spectroscopies. Boron oxide vapor was generated from a mixture of B, FeO, and MgO powders heated to 1,150 °C, and it was transported to the reaction zone by flowing ammonia. Lithium nitrate was applied to the upper side of a BN bar from a water solution. The bar was placed along a temperature gradient zone in a horizontal tubular furnace. BNNTs with average diameters of 30–50 nm were mostly observed in a temperature range of 1,280–1,320 °C. At higher temperatures, curled polycrystalline BN fibers appeared. Above 1,320 °C, the number of BNNTs drastically decreased, whereas the quantity and diameter of the fibers increased. The mechanism of BNNT and fiber growth is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chopra, N. G.; Luyken, R. J.; Cherrey, K; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966–967.

    Article  Google Scholar 

  2. Wei, X. L.; Wang, M. S.; Bando, Y; Golberg, D. Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater. 2010, 22, 4895–4899.

    Article  Google Scholar 

  3. Chopra, N. G.; Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 1998, 105, 297–300.

    Article  Google Scholar 

  4. Lee, C.; Wei, X. D.; Kysar J. W.; Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  5. Golberg, D.; Costa, P. M. F. J.; Mitome, M.; Bando, Y. Nanotubes in a gradient electric field as revealed by STM- TEM technique. Nano. Res. 2008, 1, 166–175.

    Article  Google Scholar 

  6. Chang, C. W.; Fennimore, A. M.; Afanasiev, A.; Okawa, D.; Ikuno, T.; Garcia, H.; Li, D. Y.; Majumdar, A.; Zettl, A. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 2006, 97, 085901.

    Article  Google Scholar 

  7. Gleize, P.; Schouler, M. C.; Gadelle, P.; Caillet, M. Growth of tubular boron nitride filaments. J. Mater. Sci. 1994, 29, 1575–1580.

    Article  Google Scholar 

  8. Ma, R.; Bando, Y.; Sato, T. CVD synthesis of boron nitride nanotubes without metal catalysts. Chem. Phys. Lett. 2001, 337, 61–64.

    Article  Google Scholar 

  9. Ma, R.; Bando, Y.; Sato, T.; Kurashima, K. Growth, morphology, and structure of boron nitride nanotubes. Chem. Mater. 2001, 13, 2965–2971.

    Article  Google Scholar 

  10. Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv Mater. 2007, 19, 2413–2432.

    Article  Google Scholar 

  11. Yu, D. P.; Sun, X. S.; Lee, C. S.; Bello, I.; Lee, S. T.; Gu, H. D.; Leung, K. M.; Zhou, G. W.; Dong, Z. F.; Zhang, Z. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 1998, 72, 1966–1968.

    Article  Google Scholar 

  12. Laude, T.; Matsui, Y.; Marraud, A.; Jouffrey, B. Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 2000, 76, 3239–3241.

    Article  Google Scholar 

  13. Chen, Y.; Gerald, J. F.; Williams, J. S.; Bulcock, S. Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 1999, 299, 260–264.

    Article  Google Scholar 

  14. Fathalizadeh, A.; Pham, T.; Mickelson, W.; Zettl, A. Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended- pressure, inductively-coupled thermal plasma. Nano Lett. 2014, 14, 4881–4886.

    Article  Google Scholar 

  15. Wang, J. L.; Zhang, L. P.; Zhao, G. W.; Gu, Y. L.; Zhang, Z. H.; Zhang, F.; Wang, W. M. Selective synthesis of boron nitride nanotubes by self-propagation high-temperature synthesis and annealing process. J. Solid State Chem. 2011, 184, 2478–2484.

    Article  Google Scholar 

  16. Huang, Y.; Lin, J.; Tang, C. C.; Bando, Y.; Zhi, C. Y.; Zhai, T. Y.; Dierre, B.; Sekiguchi, T.; Golberg, D. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology 2011, 22, 145602.

    Article  Google Scholar 

  17. Bartnitskaya, T. S.; Lyashenko, V. I.; Kurdyumov, A. V.; Ostrovskaya, N. F.; Rogovaya, I. G. Effect of lithium on structure formation of graphite-like boron nitride with carbothermal synthesis. Powder Metall. Metal Ceram. 1994, 33, 335–340.

    Article  Google Scholar 

  18. Golberg, D.; Mitome, M.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Appl. Phys. A. 2007, 88, 347–352.

    Article  Google Scholar 

  19. Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Boron nitride nanotubes. Mater. Sci. Engin. R 2010, 70, 92–111.

    Article  Google Scholar 

  20. Wu, J.; Han, W.-Q.; Walukiewicz, W.; Ager III, J. W.; Shan, W.; Haller, E. E.; Zettl, A. Raman spectroscopy and time- resolved photoluminescence of BN and BxCyNz nanotubes. Nano Lett. 2004, 4, 647–650.

    Article  Google Scholar 

  21. Bae, S. Y.; Seo, H. W.; Park, J.; Choi, Y. S.; Park, J. C.; Lee, S. Y. Boron nitride nanotubes synthesized in the temperature range 1000–1200 °C. Chem. Phys. Lett. 2003, 374, 534–541.

    Article  Google Scholar 

  22. Lee, C. H.; Wang, J. S.; Kayatsha, V. K.; Huang J. Y.; Yap, Y. K. Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 2008, 19, 455605.

    Article  Google Scholar 

  23. Spriggs, G. E. Properties of diamond and cubic boron nitride. In Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Beiss, P.; Ruthardt, R.; Warlimont, H., eds.; Springer: Berlin Heidelberg, 2002; pp 118–139.

    Chapter  Google Scholar 

  24. Kamitsos, E. I.; Patsis, A. P.; Karakassides, M. A.; Chryssikos, G. D. Infrared reflectance spectra of lithium borate glasses. J. Non-Crystall. Solids 1990, 126, 52–67.

    Article  Google Scholar 

  25. Meera B. N.; Ramakrishna J. Raman spectral studies of borate glasses. J. Non-Crystall. Solids 1993, 159, 1–21.

    Article  Google Scholar 

  26. Wakasugi, T.; Tsukihashi, F.; Sano N. Thermodynamics of nitrogen in B2O3, B2O3-SiO2, and B2O3-CaO systems. J. Am. Ceram. Soc. 1991, 74, 1650–1653.

    Article  Google Scholar 

  27. Wakasugi, T.; Tsukihashi, F.; Sano, N. The solubilities of BN in B2O3 bearing melts. J. Non-Crystall. Solids 1991, 135, 139–145.

    Article  Google Scholar 

  28. Çamurlu, H. E.; Sevinç, N.; Topkaya, Y. Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride. J. Eur. Ceram. Soc. 2008, 28, 679–689.

    Article  Google Scholar 

  29. Çamurlu, H. E.; Topkaya, Y.; Sevinç, N. Catalytic effect of alkaline earth oxides on carbothermic formation of hexagonal boron nitride. Ceram. Int. 2009, 35, 2271–2275.

    Article  Google Scholar 

  30. Çamurlu, H. E. Effect of Na2CO3 on hexagonal boron nitride prepared from urea and boric acid. Ceram. Int. 2011, 37, 1993–1999.

    Article  Google Scholar 

  31. Bartnitskaya, T. S.; Kurdyumov, A. V.; Lyashenko, V. I.; Ostrovskaya, N. F. Structural-chemical aspects of the catalytic synthesis of graphite-like boron nitride. Powder Metall. Metal Ceram 1998, 37, 30–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei T. Matveev, Dmitry V. Shtansky or Dmitri Golberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, A.T., Firestein, K.L., Steinman, A.E. et al. Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. Nano Res. 8, 2063–2072 (2015). https://doi.org/10.1007/s12274-015-0717-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0717-y

Keywords

Navigation