Skip to main content

Advertisement

Log in

Optical super-resolution microscopy and its applications in nano-catalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The resolution of conventional optical microscopy is only ∼200 nm, which is becoming less and less sufficient for a variety of applications. In order to surpass the diffraction limited resolution, super-resolution microscopy (SRM) has been developed to achieve a high resolution of one to tens of nanometers. The techniques involved in SRM can be assigned into two broad categories, namely “true” super-resolution techniques and “functional” super-resolution techniques. In “functional” super-resolution techniques, stochastic super-resolution microscopy (SSRM) is widely used due to its low expense, simple operation, and high resolution. The principle process in SSRM is to accumulate the coordinates of many diffraction-limited emitters (e.g., single fluorescent molecules) on the object by localizing the centroids of the point spread functions (PSF), and then reconstruct the image of the object using these coordinates. When the diffraction-limited emitters take part in a catalytic reaction, the activity distribution and kinetic information about the catalysis by nanoparticles can be obtained by SSRM. SSRM has been applied and exhibited outstanding advantages in several fields of catalysis, such as metal nanoparticle catalysis, molecular sieve catalysis, and photocatalysis. Since SSRM is able to resolve the catalytic activity within one nanoparticle, it promises to accelerate the development and discovery of new and better catalysts. This review will present a brief introduction to SRM, and a detailed description of SSRM and its applications in nano-catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pohl, D. W.; Denk, W.; Lanz, M. Optical stethoscopy-image recording with resolution lambda/20. Appl. Phys. Lett. 1984, 44, 651–653.

    Article  Google Scholar 

  2. Cremer, C.; Cremer, T. Considerations on a laser-scanning-microscope with high-resolution and depth of field. Microscopica Acta 1978, 81, 31–44.

    Google Scholar 

  3. Bailey, B.; Farkas, D. L.; Taylor, D. L.; Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 1993, 366, 44–48.

    Article  Google Scholar 

  4. Reymann, J.; Baddeley, D.; Gunkel, M.; Lemmer, P.; Stadter, W.; Jegou, T.; Rippe, K.; Cremer, C.; Birk, U. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome Res. 2008, 16, 367–382.

    Article  Google Scholar 

  5. Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 2003, 21, 1347–1355.

    Article  Google Scholar 

  6. Hell, S. W.; Kroug, M. Ground-state-depletion fluorescence microscopy—A concept for breaking the diffraction resolution limit. Appl. Phys. B-Lasers Opt. 1995, 60, 495–497.

    Article  Google Scholar 

  7. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 2005, 102, 13081–13086.

    Article  Google Scholar 

  8. Yildiz, A.; Forkey, J. N.; McKinney, S. A.; Ha, T.; Goldman, Y. E.; Selvin, P. R. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 2003, 300, 2061–2065.

    Article  Google Scholar 

  9. Yildiz, A.; Selvin, P. R. Fluorescence imaging with one manometer accuracy: Application to molecular motors. Acc. Chem. Res. 2005, 38, 574–582.

    Article  Google Scholar 

  10. Park, H.; Toprak, E.; Selvin, P. R. Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 2007, 40, 87–111.

    Article  Google Scholar 

  11. Hell, S. W.; Jakobs, S.; Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A-Mater. Sci. Process. 2003, 77, 859–860.

    Article  Google Scholar 

  12. Qu, X. H.; Wu, D.; Mets, L.; Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 2004, 101, 11298–11303.

    Article  Google Scholar 

  13. Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645.

    Article  Google Scholar 

  14. Gould, T. J.; Gunewardene, M. S.; Gudheti, M. V.; Verkhusha, V. V.; Yin, S. R.; Gosse, J. A.; Hess, S. T. Nanoscale imaging of molecular positions and anisotropies. Nat. Methods 2008, 5, 1027–1030.

    Article  Google Scholar 

  15. Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

    Article  Google Scholar 

  16. Huang, B.; Jones, S. A.; Brandenburg, B.; Zhuang, X. W. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 2008, 5, 1047–1052.

    Article  Google Scholar 

  17. Van de Linde, S.; Loschberger, A.; Klein, T.; Heidbreder, M.; Wolter, S.; Heilemann, M.; Sauer, M. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protocols 2011, 6, 991–1009.

    Article  Google Scholar 

  18. Huang, B.; Wang, W. Q.; Bates, M.; Zhuang, X. W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813.

    Article  Google Scholar 

  19. Lakadamyali, M.; Babcock, H.; Bates, M.; Zhuang, X. W.; Lichtman, J. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. Plos One 2012, 7, e30826.

    Article  Google Scholar 

  20. Olivier, N.; Keller, D.; Goenczy, P.; Manley, S. Resolution doubling in 3D-STORM imaging through improved buffers. Plos One 2013, 8, e69004.

    Article  Google Scholar 

  21. Jones, S. A.; Shim, S. H.; He, J.; Zhuang, X. W. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 2011, 8, 499–505.

    Article  Google Scholar 

  22. Thompson, R. E.; Larson, D. R.; Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002, 82, 2775–2783.

    Article  Google Scholar 

  23. Zhou, X.; Andoy, N. M.; Liu, G.; Choudhary, E.; Han, K. S.; Shen, H.; Chen, P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 2012, 7, 237–241.

    Article  Google Scholar 

  24. Metin, Ö.; Ho, S.; Alp, C.; Can, H.; Mankin, M.; Gültekin, M.; Chi, M.; Sun, S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

    Article  Google Scholar 

  25. Zhang, Q.; Guo, X.; Liang, Z.; Zeng, J.; Yang, J.; Liao, S. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.

    Article  Google Scholar 

  26. Zheng, F.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  27. Li, H.; Wang, J.; Liu, M.; Wang, H.; Su, P.; Wu, J.; Li, J. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed. Nano Res. 2014, 7, 1007–1017.

    Article  Google Scholar 

  28. Li, J.; Wang, G.; Wang, J.; Miao, S.; Wei, M.; Yang, F.; Yu, L.; Bao, X. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

    Article  Google Scholar 

  29. Wang, Z.; Chen, W.; Han, Z.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D.; Chen, Y.; Huang, S. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254–1262.

    Article  Google Scholar 

  30. Xiang, J.; Li, P.; Chong, H.; Feng, L.; Fu, F.; Wang, Z.; Zhang, S.; Zhu, M. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337–1343.

    Article  Google Scholar 

  31. Chen, P.; Zhou, X.; Shen, H.; Andoy, N. M.; Choudhary, E.; Han, K. S.; Liu, G.; Meng, W. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 2010, 39, 4560–4570.

    Article  Google Scholar 

  32. Chen, P.; Zhou, X.; Andoy, N. M.; Han, K. S.; Choudhary, E.; Zou, N.; Chen, G.; Shen, H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 2014, 43, 1107–1117.

    Article  Google Scholar 

  33. Zhou, X.; Xu, W.; Liu, G.; Panda, D.; Chen, P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 2010, 132, 138–146.

    Article  Google Scholar 

  34. Xu, W.; Shen, H.; Liu, G.; Chen, P. Single-molecule kinetics of nanoparticle catalysis. Nano Res. 2009, 2, 911–922.

    Article  Google Scholar 

  35. Andoy, N. M.; Zhou, X.; Choudhary, E.; Shen, H.; Liu, G.; Chen, P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 2013, 135, 1845–1852.

    Article  Google Scholar 

  36. Zhou, X.; Choudhary, E.; Andoy, N. M.; Zou, N.; Chen, P. Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. Acs Catal. 2013, 3, 1448–1453.

    Article  Google Scholar 

  37. Sambur, J. B.; Chen, P. Approaches to single-nanoparticle catalysis. Annu. Rev. Phys. Chem. 2014, 65, 395–422.

    Article  Google Scholar 

  38. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.

    Article  Google Scholar 

  39. Gai, P. L.; Harmer, M. A. Surface atomic defect structures and growth of gold nanorods. Nano Lett. 2002, 2, 771–774.

    Article  Google Scholar 

  40. Gulati, A.; Liao, H.; Hafner, J. H. Monitoring gold nanorod synthesis by localized surface plasmon resonance. J. Phys. Chem. B 2006, 110, 22323–22327.

    Article  Google Scholar 

  41. Martin, J. J.; Armington, A. F. Effect of growth-rate on quartz deffects. J. Cryst. Growth 1983, 62, 203–206.

    Article  Google Scholar 

  42. Morris, N. D.; Mallouk, T. E. A high-throughput optical screening method for the optimization of colloidal water oxidation catalysts. J. Am. Chem. Soc. 2002, 124, 11114–11121.

    Article  Google Scholar 

  43. Yi, J. P.; Fan, Z. G.; Jiang, Z. W.; Li, W. S.; Zhou, X. P. High-throughput parallel reactor system for propylene oxidation catalyst investigation. J. Comb. Chem. 2007, 9, 1053–1059.

    Article  Google Scholar 

  44. Kirstein, J.; Platschek, B.; Jung, C.; Brown, R.; Bein, T.; Brauchle, C. Exploration of nanostructured channel systems with single-molecule probes. Nat. Mater. 2007, 6, 303–310.

    Article  Google Scholar 

  45. Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 2012, 41, 3099–3118.

    Article  Google Scholar 

  46. Troeh, F. R.; Jabro, J. D.; Kirkham, D. Gaseous diffusion equations for porous materials. Geoderma 1982, 27, 239–253.

    Article  Google Scholar 

  47. Zurner, A.; Kirstein, J.; Doblinger, M.; Brauchle, C.; Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 2007, 450, 705–708.

    Article  Google Scholar 

  48. Roeffaers, M. B. J.; De Cremer, G.; Libeert, J.; Ameloot, R.; Dedecker, P.; Bons, A. J.; Bückins, M.; Martens, J. A.; Sels, B. F.; De Vos, D. E. et al. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 2009, 48, 9285–9289.

    Article  Google Scholar 

  49. DeCremer, G.; Roeffaers, M. B. J.; Bartholomeeusen, E.; Lin, K.; Dedecker, P.; Pescarmona, P. P.; Jacobs, P. A.; De Vos, D. E.; Hofkens, J.; Sels, B. F. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angew. Chem. Int. Ed. 2010, 49, 908–911.

    Article  Google Scholar 

  50. Liang, Y.; Wang, H.; Casalongue, H.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705.

    Article  Google Scholar 

  51. Cao, H.; Xiao, Y.; Lu, Y.; Yin, J.; Li, B.; Wu, S.; Wu, X. Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity. Nano Res. 2010, 3, 863–873.

    Article  Google Scholar 

  52. Zhang, Q.; Joo, J. B.; Lu, Z.; Dahl, M.; Oliveira, D. L.; Ye, M.; Yin, Y. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.

    Article  Google Scholar 

  53. Li, H.; Wang, D.; Fan, H.; Jiang, T.; Li, X.; Xie, T. Synthesis of ordered multivalent Mn-TiO2 nanospheres with tunable size: A high performance visible-light photocatalyst. Nano Res. 2011, 4, 460–469.

    Article  Google Scholar 

  54. Tachikawa, T.; Wang, N.; Yamashita, S.; Cui, S. C.; Majima, T. Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. 2010, 49, 8593–8597.

    Article  Google Scholar 

  55. Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 2011, 133, 7197–7204.

    Article  Google Scholar 

  56. Banin, U.; Ben-Shahar, Y.; Vinokurov, K. Hybrid semiconductor-metal nanoparticles: From architecture to function. Chem. Mater. 2014, 26, 97–110.

    Article  Google Scholar 

  57. Ha, J. W.; Ruberu, T. P. A.; Han, R.; Dong, B.; Vela, J.; Fang, N. Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. J. Am. Chem. Soc. 2014, 136, 1398–1408.

    Article  Google Scholar 

  58. Wang, N.; Tachikawa, T.; Majima, T. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chem. Sci. 2011, 2, 891–900.

    Article  Google Scholar 

  59. Tachikawa, T.; Yonezawa, T.; Majima, T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano 2013, 7, 263–275.

    Article  Google Scholar 

  60. Tachikawa, T.; Ohsaka, T.; Bian, Z.; Majima, T. Single-molecule fluorescence detection of effective adsorption sites at the metal oxide-solution interface. J. Phys. Chem. C 2013, 117, 11219–11228.

    Article  Google Scholar 

  61. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

    Article  Google Scholar 

  62. Nie, S.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  Google Scholar 

  63. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  Google Scholar 

  64. Willets, K. A.; Stranahan, S. M.; Weber, M. L. Shedding light on surface-enhanced Raman scattering hot spots through single-molecule super-resolution imaging. J. Phys. Chem. Lett. 2012, 3, 1286–1294.

    Article  Google Scholar 

  65. Weber, M. L.; Willets, K. A. Correlated super-resolution optical and structural studies of surface-enhanced raman scattering hot spots in silver colloid aggregates. J. Phys. Chem. Lett. 2011, 2, 1766–1770.

    Article  Google Scholar 

  66. Titus, E. J.; Willets, K. A. Superlocalization surface-enhanced raman scattering microscopy: Comparing point spread function models in the ensemble and single-molecule limits. ACS Nano 2013, 7, 8284–8294.

    Article  Google Scholar 

  67. Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 2014, 43, 3854–3864.

    Article  Google Scholar 

  68. Wilson, A. J.; Willets, K. A. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Lett. 2014, 14, 939–945.

    Article  Google Scholar 

  69. Willets, K. A. Plasmon point spread functions: How do we model plasmon-mediated emission processes? Front. Phys. 2014, 9, 3–16.

    Article  Google Scholar 

  70. Fischer, U. C.; Pohl, D. W. Observation of single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett. 1989, 62, 458–461.

    Article  Google Scholar 

  71. Zhou, N.; Li, Y.; Xu, X. Resolving near-field from high order signals of scattering near-field scanning optical microscopy. Opt. Express 2014, 22, 18715–18723.

    Article  Google Scholar 

  72. Andrews, D. L. A unified theory of radiative and radiationless molecular energy transfer. Chem. Phys. 1989, 135, 195–201.

    Article  Google Scholar 

  73. Ha, T. Single-molecule fluorescence resonance energy transfer. Methods 2001, 25, 78–86.

    Article  Google Scholar 

  74. Roy, R.; Hohng, S.; Ha, T. A practical guide to single-molecule FRET. Nat. Methods 2008, 5, 507–516.

    Article  Google Scholar 

  75. Chaudhuri, K. D. Concentration quenching of fluorescence in solutions. Zeitschrift für Physik 1959, 154, 34–42.

    Article  Google Scholar 

  76. Barzykin, A. V.; Razumov, V. F.; Alfimov, M. V. Fluorescence concentration self-quenching dynamics in monodisperse micellar systems. J. Phys. Chem. 1991, 95, 4814–4818.

    Article  Google Scholar 

  77. Soumpasis, D. M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 1983, 41, 95–97.

    Article  Google Scholar 

  78. Chen, J.; Jin, Y.; Fahruddin, N.; Zhao, J. X. Development of gold nanoparticle-enhanced fluorescent nanocomposites. Langmuir 2013, 29, 1584–1591.

    Article  Google Scholar 

  79. Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006, 97, 017402.

    Article  Google Scholar 

  80. Mayilo, S.; Kloster, M. A.; Wunderlich, M.; Lutich, A.; Klar, T. A.; Nichtl, A.; Kürzinger, K.; Stefani, F. D.; Feldmann, J. Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett. 2009, 9, 4558–4563.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Gu, J., He, T. et al. Optical super-resolution microscopy and its applications in nano-catalysis. Nano Res. 8, 441–455 (2015). https://doi.org/10.1007/s12274-015-0709-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0709-y

Keywords

Navigation