Skip to main content
Log in

Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electron-hole separation is a critical step to achieving efficient photocatalysis, towards which use of co-catalysts has become a widely used strategy. Despite the tremendous efforts and demonstrated functions of noble metal co-catalysts, seeking noble metal-free co-catalysts will always be the goal when designing cost-effective, high-performance hybrid photocatalysts. In this work, we demonstrate that MoS2 nanosheets with 1T phase (i.e., octahedral phase) can function as a co-catalyst with multiple merits: (1) Noble-metal-free; (2) high mobility for charge transport; (3) high density of active sites for H2 evolution on basal planes; (4) good performance stability; (5) high light transparency. As demonstrated in both photocatalytic hydrogen production and Rhodamine B degradation, the developed hybrid structure with TiO2 exhibits excellent performance, in sharp contrast to bare TiO2 and the hybrid counterpart with 2H-MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    Article  Google Scholar 

  2. Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.

    Article  Google Scholar 

  3. Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  Google Scholar 

  4. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals. 3. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 1972, 39, 163–184.

    Article  Google Scholar 

  5. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 2008, 20, 110–117.

    Article  Google Scholar 

  6. Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820–3839.

    Article  Google Scholar 

  7. Zong. X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177.

    Article  Google Scholar 

  8. Bai, S.; Ge, J.; Wang, L. L.; Gong, M.; Deng, M. S.; Kong, Q.; Song, L.; Jiang. J.; Zhang, Q.; Luo, Y. et al. A unique semiconductor-metal-graphene stack design to harness charge flow for photocatalysis. Adv. Mater. 2014, 26, 5689–5695.

    Article  Google Scholar 

  9. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  10. Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577–5591.

    Article  Google Scholar 

  11. Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  12. Meng, F. K.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.

    Article  Google Scholar 

  13. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan. B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    Article  Google Scholar 

  14. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578.

    Article  Google Scholar 

  15. Chang, K.; Mei. Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.

    Article  Google Scholar 

  16. Eda, G.; Yamaguchi, H.; Voriy, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    Article  Google Scholar 

  17. Voriy, D.; Salehi, M.; Silva, R.; Fujita, T.; Cheng, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    Article  Google Scholar 

  18. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    Article  Google Scholar 

  19. Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Chen, Z.; Dai, H. J. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705.

    Article  Google Scholar 

  20. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    Article  Google Scholar 

  21. Yuwen, L. H.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su. S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystals modified MoS2 nanosheets and enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769.

    Article  Google Scholar 

  22. Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

    Article  Google Scholar 

  23. Yan, J. Q.; Wu, G. J.; Guan, N. J.; Li, L. D.; Li, Z. X.; Cao, X. Z. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15, 10978–10988.

    Article  Google Scholar 

  24. King, L. A.; Zhao, W. J.; Chhowalla, M.; Riley, D. J.; Eda, G. Photoelectrochemical properties of chemically exfoliated MoS2. J. Mater. Chem. A 2013, 1, 8935–8941.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Wang, L., Chen, X. et al. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 8, 175–183 (2015). https://doi.org/10.1007/s12274-014-0606-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0606-9

Keywords

Navigation