Skip to main content
Log in

Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on \((11\bar 20)\) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on \((11\bar 20)\) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal-semiconductor graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costa Girão, E.; Liang, L. B.; Cruz-Silva, E.; Filho, A. G. S.; Meunier, V. Emergence of a typical properties in assembled graphene nanoribbons. Phys. Rev. Lett. 2011, 107, 135501.

    Article  Google Scholar 

  2. Sprinkle, M.; Ruan, M.; Hu, Y.; Hankinson, J.; Rubio-Roy, M.; Zhang, B.; Wu, X.; Berger, C.; de Heer, W. A. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 2010, 5, 727–731.

    Article  Google Scholar 

  3. Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; de Heer, W. A.; Lee, D. H.; Guinea, F.; Castro Neto, A. H.; Lanzara, A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770–775.

    Article  Google Scholar 

  4. Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  5. Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E Lowdimens Syst. Nanostruct. 2007, 40, 228–232.

    Article  Google Scholar 

  6. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  7. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

  8. Hass, J.; de Heer, W. A.; Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 2008, 20, 323202.

    Google Scholar 

  9. Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. N.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E. H. et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.

    Article  Google Scholar 

  10. Forbeaux, I.; Themlin, J. M.; Debever, J. M. Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 396–406.

    Article  Google Scholar 

  11. Somani, P. R.; Somani, S. P.; Umeno, M. Planer nanographenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.

    Article  Google Scholar 

  12. Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

    Article  Google Scholar 

  13. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  Google Scholar 

  14. Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867–2872.

    Article  Google Scholar 

  15. Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C.; Mammana, V. P. Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 2004, 85, 1265.

    Article  Google Scholar 

  16. Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  Google Scholar 

  17. Brey, L.; Fertig, H. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.

    Article  Google Scholar 

  18. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 5417954.

    Article  Google Scholar 

  19. Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  20. Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by STM lithography. Nat. Nanotechnol. 2008, 3, 397–401.

    Article  Google Scholar 

  21. Han, M. Y.; Brant, J. C.; Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 2010, 104, 056801.

    Article  Google Scholar 

  22. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  Google Scholar 

  23. Hwang, E. H.; Adam, S.; Das Sarma, S. Transport in chemically doped graphene in the presence of adsorbed molecules. Phys. Rev. B 2007, 76, 195421.

    Article  Google Scholar 

  24. Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91 163513.

    Article  Google Scholar 

  25. Camara, N.; Rius, G.; Huntzinger, J. R.; Tiberj, A.; Mestres, N.; Godignon, P.; Camassel, J. Selective epitaxial growth of graphene on SiC. Appl. Phys. Lett. 2008, 93, 123503.

    Article  Google Scholar 

  26. Rubio-Roy, M.; Zaman, F.; Hu, Y.; Berger, C.; Moseley, M. W.; Meindl, J. D.; de Heer, W. A. Structured epitaxial graphene growth on SiC by selective graphitization using a patterned AlN cap. Appl. Phys. Lett. 2010, 96, 082112.

    Article  Google Scholar 

  27. Camara, N.; Huntzinger, J. R.; Rius, G.; Tiberj, A.; Mestres, N.; Pérez-Murano, F.; Godignon, P.; Camassel, J. Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC. Phys. Rev. B 2009, 80, 125410.

    Article  Google Scholar 

  28. Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Nevius, M. S.; Wang, F.; Shepperd, K.; Palmer, J.; Bertran, F.; Le Fèvre, P.; Kunc, J. et al. A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 2013, 9, 49–54.

    Article  Google Scholar 

  29. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.

    Article  Google Scholar 

  30. Ouerghi, A.; Silly, M. G.; Marangolo, M.; Mathieu, C.; Eddrief, M.; Picher, M.; Sirotti, F.; EI Moussaoui, S.; Belkhou, R. Large-area and high-quality epitaxial graphene on off-axis SiC wafers. ACS Nano 2012, 6, 6075–6082.

    Article  Google Scholar 

  31. Nicotra, G.; Ramasse, Q. M.; Deretzis, I.; La Magna, A.; Spinella, C.; Giannazzo, F. Delaminated graphene at silicon carbide facets: Atomic scale imaging and spectroscopy. ACS Nano 2013, 7, 3045–3052.

    Article  Google Scholar 

  32. Tanaka, S.; Morita, K.; Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 2010, 81, 041406.

    Article  Google Scholar 

  33. Vecchio, C.; Sonde, S.; Bongiorno, C.; Rambach, M.; Yakimova, R.; Raineri, V.; Giannazzo, F. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001). Nanoscale Res. Lett. 2011, 6, 269.

    Article  Google Scholar 

  34. Lalmi, B.; Girard, J. C.; Pallecchi, E.; Silly, M.; David, C.; Latil, S.; Sirotti, F.; Ouerghi, A. Flower-shaped domains and wrinkles in trilayer epitaxial graphene on silicon carbide. Sci. Rep. 2014, 4, 4066.

    Article  Google Scholar 

  35. Pallecchi, E.; Lafont, F.; Cavaliere, V.; Schopfer, F.; Mailly, D.; Poirier, W.; Ouerghi, A. High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci. Rep. 2014, 4, 4558.

    Article  Google Scholar 

  36. Polack, F.; Silly, M.; Chauvet, C.; Lagarde, B.; Bergeard, N.; Izquierdo, M.; Chubar, O.; Krizmancic, D.; Ribbens, M.; Duval, J. P. et al. TEMPO: A new insertion device beamline at SOLEIL for time resolved photoelectron spectroscopy experiments on solids and interfaces. AIP Conf. Proc. 2010, 1234, 185–188.

    Article  Google Scholar 

  37. Bergeard, N.; Silly, M. G.; Krizmancic, D.; Chauvet, C.; Guzzo, M.; Ricaud, J. P.; Izquierdo, M.; Stebel, L.; Pittana, P.; Sergo, R. et al. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure. J. Synchrotron Radiat. 2011, 18, 245–250.

    Article  Google Scholar 

  38. Lewis, J. P.; Glaesemann, K. R.; Voth, G. A.; Fritsch, J.; Demkov, A. A.; Ortega, J.; Sankey, O. F. Further developments in the local-orbital density-functional-theory tight-binding method. Phys. Rev. B 2001, 64, 195103.

    Article  Google Scholar 

  39. Lewis, J. P.; Jelínek, P.; Ortega, J.; Demkov, A. A.; Trabada, D. G.; Haycock, B.; Wang, H.; Adams, G.; Tomfohr, J. K.; Abad, E. et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B 2011, 248, 1989–2007.

    Google Scholar 

  40. Jelínek, P.; Wang, H.; Lewis, J. P.; Sankey, O. F.; Ortega, J. Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods. Phys. Rev. B 2005, 71, 235101.

    Article  Google Scholar 

  41. Sankey, O. F.; Niklewski, D. J. Ab initio multicenter tight-binding for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 1989, 40, 3979–3995.

    Article  Google Scholar 

  42. Basanta, M. A.; Dappe, Y. J.; Jelínek, P.; Ortega, J. Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comp. Mater. Sci. 2007, 39, 759–766.

    Article  Google Scholar 

  43. Dappe, Y. J.; Ortega, J.; Flores, F. Intermolecular interaction in density functional theory: Application to carbon nanotubes and fullerenes. Phys. Rev. B 2009, 79, 165409.

    Article  Google Scholar 

  44. Švec, M.; Merino, P.; Dappe, Y. J.; González, C.; Abad, E.; Jelínek, P.; Martin-Gago, J. A. van der Waals interactions mediating the cohesion of fullerenes on graphene. Phys. Rev. B 2012, 86, 121407.

    Article  Google Scholar 

  45. Ouerghi, A.; Balan, A.; Castelli, C.; Picher, M.; Belkhou, R.; Eddrief, M.; Silly, M. G.; Marangolo, M.; Shukla, A.; Sirotti, F. Epitaxial graphene on single domain 3C-SiC (100) thin films grown on off-axis. Appl. Phys. Lett. 2012, 101, 021603.

    Article  Google Scholar 

  46. Michon, A.; Vézian, S.; Ouerghi, A.; Zielinski, M.; Chassagne, T.; Portail, M. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition. Appl. Phys. Lett. 2010, 97, 171909.

    Article  Google Scholar 

  47. Giannazzo, F.; Deretzis, I.; Nicotra, G.; Fisichella, G.; Spinella, C.; Roccaforte, F.; La Magna, A. Electronic properties of epitaxial graphene residing on SiC facets probed by conductive atomic force microscopy. Appl. Surf. Sci. 2014, 291, 53–57.

    Article  Google Scholar 

  48. Huang, H.; Wong, S. L.; Tin, C. C.; Luo, Z. Q.; Shen, Z. X.; Chen, W.; Wee, A. T. S. Epitaxial growth and characterization of graphene on free-standing polycrystalline 3C-SiC. J. Appl. Phys. 2011, 110, 014308.

    Article  Google Scholar 

  49. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.

    Article  Google Scholar 

  50. Burnett, T.; Yakimova, R.; Kazakova, O. Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. Nano Lett. 2011, 11, 2324–2328.

    Article  Google Scholar 

  51. Gogneau, N.; Balan, A.; Ridene, M.; Shukla, A.; Ouerghi, A. Control of the degree of surface graphitization on 3C-SiC(100)/Si(100). Surf. Sci. 2012, 606, 217–220.

    Article  Google Scholar 

  52. Filleter, T.; Emtsev, K. V.; Seyller, T.; Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 2008, 93, 133117.

    Article  Google Scholar 

  53. Coletti, C.; Emtsev, K. V.; Zakharov, A. A.; Ouisse, T.; Chaussende, D.; Starke, U. Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 2011, 99, 081904.

    Article  Google Scholar 

  54. Emtsev, K. V.; Speck, F.; Seyller, T.; Ley, L.; Riley, J. D. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.

    Article  Google Scholar 

  55. Penuelas, J.; Ouerghi, A.; Lucot, D.; David, C.; Gierak, J.; Estrade-Szwarckopf, H.; Andreazza-Vignolle, C. Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys. Rev. B 2009, 79, 033408.

    Article  Google Scholar 

  56. Jabakhanji, B.; Michon, A.; Consejo, C.; Desrat, W.; Portail, M.; Tiberj, A.; Paillet, M.; Zahab, A.; Cheynis, F.; Lafont, F. et al. Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of in situ hydrogenation and annealing. Phys. Rev. B 2014, 89, 085422.

    Article  Google Scholar 

  57. Ostler, M.; Deretzis, I.; Mammadov, S.; Giannazzo, F.; Nicotra, G.; Spinella, C.; Seyller, T.; La Magna, A. Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 2013, 88, 085408.

    Article  Google Scholar 

  58. Jayasekera, T.; Xu, S.; Kim, K. W.; Nardelli, M. B. Electronic properties of the graphene/6H-SiC(000-1) interface: A first-principles study. Phys. Rev. B 2011, 84, 035442.

    Article  Google Scholar 

  59. Ohta, T.; Bostwick, A.; Mcchesney, J. L.; Seyller, T.; Horn, K.; Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkarim Ouerghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierucci, D., Sediri, H., Hajlaoui, M. et al. Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001). Nano Res. 8, 1026–1037 (2015). https://doi.org/10.1007/s12274-014-0584-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0584-y

Keywords

Navigation