Skip to main content
Log in

Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nanostructures is important for practical applications in environmental purification and solar energy conversion. We present here the fabrication of interconnected TiO2 nanotubes as a macroscopic bulk material by using a porous carbon nanotube (CNT) sponge as a template. The basic idea is to uniformly coat an amorphous titania layer onto the CNT surface by the infiltration of a TiO2 precursor into the sponge followed by a subsequent hydrolysis process. After calcination, the CNTs are completely removed and the titania is simultaneously crystallized, which results in a porous macrostructure composed of interconnected anatase TiO2 nanotubes. The TiO2 nanotube macrostructures show comparable photocatalytic activities to commercial products (AEROXIDE TiO2 P25) for the degradation of rhodamine B (RhB). Moreover, the TiO2 nanotube macrostructures can be settled and separated from water within 12 h after photocatalysis, whereas P25 remains suspended in solution after weeks. Thus the TiO2 nanotube macrostructures offer the advantage of easy catalyst separation and recycle and can be a promising candidate for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L.; Liu, H. J.; Zhao, Y. P.; Wang, Y. Q.; Duan, Y. Q.; Gao, G. D.; Ge, M.; Chen, W. Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ. Sci. Technol. 2008, 42, 2342–2348.

    Article  Google Scholar 

  2. Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 2012, 8, 3073–3103.

    Article  Google Scholar 

  3. Dong, W. J.; Cogbill, A.; Zhang, T. R.; Ghosh, S.; Tian, Z. R. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. J. Phys. Chem. B 2006, 110, 16819–16822.

    Article  Google Scholar 

  4. Zhang, S.; Ji, C.Y.; Bian, Z. Q.; Liu, R. H.; Xia, X. Y.; Yun, D. Q.; Zhang, L. H.; Huang, C. H.; Cao, A. Y. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett. 2011, 11, 3383–3387.

    Article  Google Scholar 

  5. Zhu, Y. F.; Shi, J. J.; Zhang, Z. Y.; Zhang, C.; Zhang, X. R. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal. Chem. 2002, 74, 120–124.

    Article  Google Scholar 

  6. Zheng, K. H.; Meng, F. B.; Jiang, L.; Yan, Q. Y.; Hng, H. H.; Chen, X. D. Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles. Small 2013, 9, 2076–2080.

    Article  Google Scholar 

  7. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  8. Qiu, J. J.; Yu, W. D.; Gao, X. D.; Li, X. M. Fabrication and characterization of TiO2 nanotube arrays having nanopores in their walls by double-template-assisted sol-gel. Nanotechnology 2007, 18, 295604.

    Article  Google Scholar 

  9. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307–1311.

    Article  Google Scholar 

  10. Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Xu, H. F. Large oriented arrays and continuous films and TiO2-based nanotubes. J. Am. Chem. Soc. 2003, 125, 12384–12385.

    Article  Google Scholar 

  11. Ratanatawanate, C.; Chyao, A.; Balkus, K. J. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen. J. Am. Chem. Soc. 2011, 133, 3492–3497.

    Article  Google Scholar 

  12. Macák, J. M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005, 44, 2100–2102.

    Article  Google Scholar 

  13. Koh, J. H.; Koh, J. K.; Seo, J. A.; Shin, J. S.; Kim, J. H. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells. Nanotechnology 2011, 22, 365401

    Article  Google Scholar 

  14. Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939.

    Article  Google Scholar 

  15. Liao, J. J.; Lin, S. W.; Zhang, L.; Pan, N. Q.; Cao, X. K.; Li, J. B. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl. Mater. Interfaces 2012, 4, 171–177.

    Article  Google Scholar 

  16. Wang, D. A.; Zhang, L. B.; Lee, W.; Knez, M.; Liu, L. F. Novel three-dimensional nanoporous alumina as a template for hierarchical TiO2 nanotube arrays. Small 2013, 9, 1025–1029.

    Article  Google Scholar 

  17. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621

    Article  Google Scholar 

  18. Zhang, H. Z.; Banfield, J. F. Polymorphic transformations and particle coarsening in nanocrystalline titania ceramic powders and membranes. J. Phys. Chem. C 2007, 111, 6621–6629.

    Article  Google Scholar 

  19. Sun, Z. Y.; Liu, Z. M.; Han, B. X.; Wang, Y.; Du, J. M.; Xie, Z. L.; Han, G. J. Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water. Adv. Mater. 2005, 17, 928–932.

    Article  Google Scholar 

  20. Cong, Y.; Li, X. K.; Qin, Y.; Dong, Z. J.; Yuan, G. M.; Cui, Z. W.; Lai, X. J. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl. Catal., B-Environ. 2011, 107, 128–134.

    Article  Google Scholar 

  21. Zhang, S. S.; Liu, C.; Liu, X. L.; Zhang, H. M.; Liu, P. R.; Zhang, S. Q.; Peng, F.; Zhao, H. J. Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst. Appl. Microbiol. Biotechnol. 2012, 96, 1201–1207.

    Article  Google Scholar 

  22. Mamakhel, A.; Tyrsted, C.; Bøjesen, E. D.; Hald, P.; Iversen, B. B. Direct formation of crystalline phase pure rutile TiO2 nanostructures by a facile hydrothermal method. Cryst. Growth Des. 2013, 13, 4730–4734.

    Article  Google Scholar 

  23. Peng, T. Y.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B 2005, 109, 4947–4952.

    Article  Google Scholar 

  24. Zheng, X. L.; Kuang, Q.; Yan, K. Y.; Qiu, Y. C.; Qiu, J. H.; Yang, S. H. Mesoporous TiO2 single crystals: facile shape-, size-, and phase controlled growth and efficient photocatalytic performance. ACS Appl. Mater. Interfaces 2013, 5, 11249–11257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anyuan Cao or Ying Fang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhou, Q., Gao, Y. et al. Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Res. 8, 900–906 (2015). https://doi.org/10.1007/s12274-014-0571-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0571-3

Keywords

Navigation