Skip to main content
Log in

Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report thermoelectric transport measurements across a graphene/hexagonal boron nitride (h-BN)/graphene heterostructure device. Using an AC lock-in technique, we are able to separate the thermoelectric contribution to the IV characteristics of these important device structures. The temperature gradient is measured optically using Raman spectroscopy, which enables us to explore thermoelectric transport produced at material interfaces, across length scales of just 1–2 nm. Based on the observed thermoelectric voltage (ΔV) and temperature gradient (ΔT), a Seebeck coefficient of −99.3 μV/K is ascertained for the heterostructure device. The obtained Seebeck coefficient can be useful for understanding the thermoelectric component in the cross-plane IV behaviors of emerging 2D heterostructure devices. These results provide an approach to probing thermoelectric energy conversion in two-dimensional layered heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C.C.; Aykol, M.; Chang, C. C.; Levi, A. F. J.; Cronin, S. B. Graphene-silicon Schottky diodes. Nano Lett. 2011, 11, 1863–1867.

    Article  Google Scholar 

  2. Chen, C.C.; Chang, C. C.; Li, Z.; Levi A. F. J.; Cronin, S. B. Gate tunable graphene-silicon Ohmic/Schottky contacts. Appl. Phys. Lett. 2012, 101, 223113.

    Article  Google Scholar 

  3. Cui, T.X.; Lv, R. T.; Huang, Z. H.; Chen, S. X.; Zhang, Z. X.; Gan, X.; Jia, Y.; Li, X. M.; Wang, K. L.; Wu, D. H.; Kang, F. Y. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J. Mater. Chem. A 2013, 1, 5736–5740.

    Article  Google Scholar 

  4. Jie, W.; Zheng, F.; Hao, J. Graphene/gallium arsenide-based Schottky junction solar cells. Appl. Phys. Lett 2013, 103, 233111.

    Article  Google Scholar 

  5. An, X. H.; Liu, F. Z.; Kar, S. Optimizing performance parameters of graphene-silicon and thin transparent graphite-silicon heterojunction solar cells. Carbon 2013, 57, 329–337.

    Article  Google Scholar 

  6. Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; Fang, Y.; Cao, A. Y. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776–1781.

    Google Scholar 

  7. Li, X.; Fan, L. L.; Li, Z.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Zhu, H. W. Boron doping of graphene for graphene-silicon p-n junction solar cells. Adv. Ener. Mater. 2012, 2, 425–429.

    Article  Google Scholar 

  8. Lin, Y. X.; Xie, D.; Chen, Y.; Feng, T. T.; Shao, Q. M.; Tian, H.; Ren, T. L.; Li, X. M.; Li, X.; Fan, L. L.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Optimization of graphene/silicon heterojunction solar cells. In Preceedings of 2012 38th IEEE Photovoltaic Specialists Conference (Pvsc), 2012. 2566–2570.

    Chapter  Google Scholar 

  9. Feng, T. T.; Xie, D.; Lin, Y. X.; Zhao, H. M.; Chen, Y.; Tian, H.; Ren, T. L.; Li, X.; Li, Z.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale 2012, 4, 2130–2133.

    Article  Google Scholar 

  10. Won, R. Photovoltaics: graphene-silicon solar cells. Nat. Photonics 2010, 4, 411.

    Article  Google Scholar 

  11. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R.; Neto, A. H. C.; Leist, J.; Geim, A. K.; Ponomarenko, L. A.; Novoselov, K. S. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

    Article  Google Scholar 

  12. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; Ponomarenko, L. A. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    Article  Google Scholar 

  13. Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Comm. 2013, 4, 1794.

    Article  Google Scholar 

  14. Kim, S.; Shin, D. H.; Kim, C. O.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Loo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H.; Hwang, E. Graphene p-n vertical tunneling diodes. ACS Nano 2013, 7, 5168–5174.

    Article  Google Scholar 

  15. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    Article  Google Scholar 

  16. Jo, I.; Hsu, I. K. Lee, Y. J.; Sadeghi, M. M.; Kim, S.; Cronin, S.; Tutuc, E.; Banerjee, S. K.; Yao, Z.; Shi, L. Low-Frequency acoustic phonon temperature distribution in electrically biased graphene. Nano Lett. 2011, 11, 85–90.

    Article  Google Scholar 

  17. Pop, E.; Varshney, V.; Roy, A. K. Thermal properties of graphene: Fundamentals and applications. Mrs Bulletin 2012, 37, 1273–1281.

    Article  Google Scholar 

  18. Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.

    Article  Google Scholar 

  19. Xie, Z. X.; Tang, L. M.; Pan, C. N.; Chen, Q.; Chen, K. Q. Ballistic thermoelectric properties in boron nitride nanoribbons. J. Appl. Phys. 2013, 114, 144311.

    Article  Google Scholar 

  20. Yang, K. K.; Chen, Y. P.; D’Agosta, R.; Xie, Y. E.; Zhong, J. X.; Rubio, A. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B 2012, 86, 045425.

    Article  Google Scholar 

  21. Grosse, K. L.; Bae, M. H.; Lian, F. F.; Pop, E.; King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 2011, 6, 287–290.

    Article  Google Scholar 

  22. Li, X. S.; Cai, W. W.; An, J. H. Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  23. Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554.

    Article  Google Scholar 

  24. Lee, G. H.; Yu, Y. J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

    Article  Google Scholar 

  25. Chen, C. C.; Bao, W. Z.; Theiss, J.; Dames, C.; Lau, C. N.; Cronin, S. B. Raman spectroscopy of ripple formation in suspended graphene. Nano Lett. 2009, 9, 4172–4176.

    Article  Google Scholar 

  26. Chen, C. C.; Bao, W. Z.; Chang, C. C.; Zhao, Z.; Lau, C. N.; Cronin, S. B. Raman spectroscopy of substrate-induced compression and substrate doping in thermally cycled graphene. Phys. Rev. B, 2012, 85, 035431.

    Article  Google Scholar 

  27. Shi, L.; Li, D. Y.; Yu, C. H.; Jang, W. Y.; Kim, D. Y.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Trans. T. Asme 2013, 125, 1209–1209.

    Article  Google Scholar 

  28. Yamane, T.; Nagai, N.; Katayama, S.; Todoki, M. Measurement of thermal conductivity of silicon dioxide thin films using a 3 omega method. J. Appl. Phys. 2002, 91, 9772–9776.

    Article  Google Scholar 

  29. Li, X. M.; Yin, J.; Zhou, J. X.; Wang, Q.; Guo, W. L. Exceptional high Seebeck coefficient and gas-flow-induced voltage in multilayer graphene. Appl. Phys. Lett. 2012, 100, 183108.

    Article  Google Scholar 

  30. Cho, S.; Kang, S. D.; Kim, W.; Lee, E. S.; Woo, S. J.; Kong, K. J.; Kim, I.; Kim, H. D.; Zhang, T.; Stroscio, J. A.; Kim, Y. H.; Lyeo, H. K. Thermoelectric imaging of structural disorder in epitaxial graphene. Nat. Mater. 2013, 12, 913–918.

    Article  Google Scholar 

  31. Lee, E. S.; Cho, S.; Lyeo. H. K.; Kim, Y. H. Seebeck effect at the atomic scale. Phys. Rev. Lett. 2014, 112, 136601.

    Article  Google Scholar 

  32. Mahan, G. D.; Woods, L. M. Multilayer thermionic refrigeration. Phys. Rev. Lett. 1998, 80, 4016–4019.

    Article  Google Scholar 

  33. Mahan, G. D.; Sofo, J. O.; Bartkowiak, M. Multilayer thermionic refrigerator and generator. J. Appl. Phys. 1998, 83, 4683–4689.

    Article  Google Scholar 

  34. Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–778.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Cronin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CC., Li, Z., Shi, L. et al. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 8, 666–672 (2015). https://doi.org/10.1007/s12274-014-0550-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0550-8

Keywords

Navigation