Skip to main content
Log in

Synthesis and TEM structural characterization of C60-flattened carbon nanotube nanopeapods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723–773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajayan, P. M.; Iijima, S. Capillarity-induced filling of carbon nanotubes. Nature 1993, 361, 333–334.

    Article  Google Scholar 

  2. Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

    Article  Google Scholar 

  3. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

    Article  Google Scholar 

  4. Smith, B. W.; Monthioux, M.; Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 1998, 396, 323–324.

    Article  Google Scholar 

  5. Hirahara, K.; Bandow, S.; Suenaga, K.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. Electron diffraction study of one-dimensional crystals of fullerenes. Phys. Rev. B 2001, 64, 115420.

    Article  Google Scholar 

  6. Wang, Z. Y.; Zhao, K. K.; Li, H.; Liu, Z.; Shi, Z. J.; Liu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Jin, Z. X.; et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. J. Mater. Chem. 2011, 21, 171–180.

    Article  Google Scholar 

  7. Hirahra, K.; Suenaga, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5384–5387.

    Article  Google Scholar 

  8. Kitaura, R.; Nakanishi, R.; Saito, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew. Chem. Int. Ed. 2009, 48, 8298–8302.

    Article  Google Scholar 

  9. Kitaura, R.; Imazu, N.; Kobayashi, K.; Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 2008, 8, 693–699.

    Article  Google Scholar 

  10. Kitaura, R.; Shinohara, H. Carbon-nanotube-based hybrid materials: Nanopeapods. Chem. Asian J. 2006, 1, 646–655.

    Article  Google Scholar 

  11. Lee, J.; Kim, H.; Kahng, S. J.; Kim, G.; Son, Y. W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008.

    Article  Google Scholar 

  12. Shimada, T.; Okazaki, T.; Taniguchi, R.; Sugai, T.; Shinohara, H.; Suenaga, K.; Ohno, Y.; Mizuno, S.; Kishimoto, S.; Mizutani, T. Ambipolar field-effect transistor behavior of Gd@C82 metallofullerene peapods. Appl. Phys. Lett. 2002, 81, 4067–4069.

    Article  Google Scholar 

  13. Choi, D. H.; Wang, Q.; Azuma, Y.; Majima, Y.; Warner, J. H.; Miyata, Y.; Shinohara, H.; Kitaura, R. Fabrication and characterization of fully flattened carbon nanotubes: A new graphene nanoribbon analogue. Sci. Rep. 2013, 3, 1617.

    Google Scholar 

  14. Kim, K.; Lee, Z.; Malone, B. D.; Chan, K. T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M. F.; Cohen, M. L.; Zettl, A. Multiply folded graphene. Phys. Rev. B 2011, 83, 245433.

    Article  Google Scholar 

  15. Suenaga, K.; Sandré, E.; Colliex, C.; Pickard, C. J.; Kataura, H.; Iijima, S. Electron energy-loss spectroscopy of electron states in isolated carbon nanostructures. Phys. Rev. B 2001, 63, 165408.

    Article  Google Scholar 

  16. Cowley, J. M.; Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 1957, 10, 609–619.

    Article  Google Scholar 

  17. Elliott, J. A.; Sandler, J. K. W.; Windle, A. H.; Young, R. J.; Shaffer, M. S. P. Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 2004, 92, 095501.

    Article  Google Scholar 

  18. Zhang, C. G.; Bets, K.; Lee, S. S.; Sun, Z.; Mirri, F.; Colvin, V. L.; Yakobson, B. I.; Tour, J. M.; Hauge, R. H. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano 2012, 6, 6023–6032.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryo Kitaura or Hisanori Shinohara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Kitaura, R., Yamamoto, Y. et al. Synthesis and TEM structural characterization of C60-flattened carbon nanotube nanopeapods. Nano Res. 7, 1843–1848 (2014). https://doi.org/10.1007/s12274-014-0544-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0544-6

Keywords

Navigation