Skip to main content
Log in

Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Encompassing ecological and economic concerns, the utilization of biomass to produce carbonaceous materials has attracted intensive research and industrial interest. Using nitrogen containing precursors could realize an in situ and homogeneous incorporation of nitrogen into the carbonaceous materials with a controlled process. Herein, N-doped hollow core-disordered mesoporous shell carbonaceous nanospheres (HCDMSs) were synthesized from glucosamine hydrochloride (GAH), an applicable carbohydrate-based derivative. The obtained HCDMSs possessed controlled size (∼450-50 nm) and shell thickness (∼70-10 nm), suitable nitrogen contents (∼6.7-4.4 wt.%), and Brunauer-Emmett-Teller (BET) surface areas up to 770 m2·g−1. These materials show excellent electrocatalytic activity as a metal-free catalyst for the oxygen reduction reaction (ORR) in both alkaline and acidic media. Specifically, the prepared HCDMS-1 exhibits a high diffusion-limited current, and superior durability and better immunity towards methanol crossover and CO poisoning for ORR in alkaline solution than a commercial 20 wt.% Pt/C catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, X.; Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 597–601.

    Article  Google Scholar 

  2. Lu, A. H.; Li, W. C.; Hao, G. P.; Spliethoff, B.; Bongard, H. J.; Schaack, B. B.; Schüth, F. Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew. Chem. Int. Ed. 2010, 49, 1615–1618.

    Article  Google Scholar 

  3. White, R. J.; Tauer, K.; Antonietti, M.; Titirici, M. M. Functional hollow carbon nanospheres by latex templating. J. Am. Chem. Soc. 2010, 132, 17360–17363.

    Article  Google Scholar 

  4. Lei, Z. B.; Chen, Z. W.; Zhao, X. S. Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J. Phys. Chem. C. 2010, 114, 19867–19874.

    Article  Google Scholar 

  5. Guo, L.; Zhang, J.; He, Q.; Zhang, L.; Zhao, J.; Zhu, Z.; Wu, W.; Zhang, J.; Shi, J. Preparation of millimetre-sized mesoporous carbon spheres as an effective bilirubin adsorbent and their blood compatibility. Chem. Commun. 2010, 46, 7127–7129.

    Article  Google Scholar 

  6. Lai, X.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.

    Article  Google Scholar 

  7. Schaefer, Z. L.; Gross, M. L.; Hickner, M. A.; Schaak, R. E. Uniform hollow carbon shells: Nanostructured graphitic supports for improved oxygen-reduction catalysis. Angew. Chem. Int. Ed. 2010, 49, 7045–7048.

    Article  Google Scholar 

  8. Kim, J. H.; Yu, J. S. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells. Phys. Chem. Chem. Phys. 2010, 12 15301–15308.

    Article  Google Scholar 

  9. Fang, B. Z.; Kim, J. H.; Lee, C.; Yu, J. S. Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J. Phys. Chem. C 2008, 112, 639–645.

    Article  Google Scholar 

  10. Yan, Z.; Meng, H.; Shen, P. K.; Meng, Y.; Ji, H. Effect of the templates on the synthesis of hollow carbon materials as electrocatalyst supports for direct alcohol fuel cells. Int. J. Hydrogen Energy. 2012, 37, 4728–4736.

    Article  Google Scholar 

  11. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904–5908.

    Article  Google Scholar 

  12. Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838–842.

    Article  Google Scholar 

  13. Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.

    Article  Google Scholar 

  14. Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2012, 6, 38–46.

    Article  Google Scholar 

  15. Han, Y.; Dong, X.; Zhang, C.; Liu, S. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J. Power Sources 2012, 211, 92–96.

    Article  Google Scholar 

  16. Guo, L.; Zhang, L.; Zhang, J.; Zhou, J.; He, Q.; Zeng, S.; Cui, X.; Shi, J. Hollow mesoporous carbon spheres-An excellent bilirubin adsorbent. Chem. Commun. 2009, 6071–6073.

    Google Scholar 

  17. Harada, T.; Ikeda, S.; Ng, Y. H.; Sakata, T.; Mori, H.; Torimoto, T.; Matsumura, M. Rhodium nanoparticle encapsulated in a porous carbon shell as an active heterogeneous catalyst for aromatic hydrogenation. Adv. Funct. Mater. 2008, 18, 2190–2196.

    Article  Google Scholar 

  18. Zeng, Y.; Wang, X.; Wang, H.; Dong, Y.; Ma, Y.; Yao, J. Multi-shelled titania hollow spheres fabricated by a hard template strategy: Enhanced photocatalytic activity. Chem. Commun. 2010, 46, 4312–4314.

    Article  Google Scholar 

  19. Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6799–6802.

    Article  Google Scholar 

  20. Fuertes, A. B.; Sevilla, M.; Valdes-Solis, T.; Tartaj, P. Synthetic route to nanocomposites made up of inorganic nanoparticles confined within a hollow mesoporous carbon shell. Chem. Mater. 2007, 19, 5418–5423.

    Article  Google Scholar 

  21. Xia, Y.; Mokaya, R. Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv. Mater. 2004, 16, 886–891.

    Article  Google Scholar 

  22. Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 2008, 20, 6562–6566.

    Article  Google Scholar 

  23. Yoon, S. B.; Sohn, K.; Kim, J. Y.; Shin, C. H.; Yu, J. S.; Hyeon, T. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Adv. Mater. 2002, 14, 19–21.

    Article  Google Scholar 

  24. Valle-Vigón, P.; Sevilla, M.; Fuertes, A. B. Synthesis of uniform mesoporous carbon capsules by carbonization of organosilica nanospheres. Chem. Mater. 2010, 22, 2526–2533.

    Article  Google Scholar 

  25. Lu, A. H.; Hao, G. P.; Sun, Q.; Zhang, X. Q.; Li, W. C. Chemical synthesis of carbon materials with intriguing nanostructure and morphology. Macromol. Chem. Phys. 2012, 213, 1107–1131.

    Article  Google Scholar 

  26. Li, S. Y.; Liang, Y. R.; Wu, D. C.; Fu, R. W. Fabrication of bimodal mesoporous carbons from petroleum pitch by a one-step nanocasting method. Carbon 2010, 48, 839–843.

    Article  Google Scholar 

  27. Soll, S.; Fellinger, T. P.; Wang, X.; Zhao, Q.; Antonietti, M.; Yuan, J. Water dispersible, highly graphitic and nitrogen-doped carbon nanobubbles. Small 2013, 9, 4135–4141.

    Article  Google Scholar 

  28. Lu, A. H.; Sun, T.; Li, W. C.; Sun, Q.; Han, F.; Liu, D. H.; Guo, Y. Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew. Chem. Int. Ed. 2011, 50, 11765–11768.

    Article  Google Scholar 

  29. Yang, M.; Ma, J.; Ding, S. J.; Meng, Z. K.; Liu, J. G.; Zhao, T.; Mao, L. Q.; Shi, Y.; Jin, X. G.; Lu, Y. F.; et al. Phenolic resin and derived carbon hollow spheres. Macromol. Chem. Phys. 2006, 207, 1633–1639.

    Article  Google Scholar 

  30. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C. X.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282, 897–901.

    Article  Google Scholar 

  31. Sun, Z.; Liu, Y.; Li, B.; Wei, J.; Wang, M.; Yue, Q.; Deng, Y.; Kaliaguine, S.; Zhao, D. Y. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano 2013, 7, 8706–8714.

    Article  Google Scholar 

  32. Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. General synthetic route toward functional hollow spheres with double-shelled structures. Angew. Chem. Int. Ed. 2005, 44, 6727–6730.

    Article  Google Scholar 

  33. Tang, C.; Bombalski, L.; Kruk, M.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. Nanoporous carbon films from “hairy” polyacrylonitrile-grafted colloidal silica nanoparticles. Adv. Mater. 2008, 20, 1516–1522.

    Article  Google Scholar 

  34. Kruk, M.; Dufour, B.; Celer, E. B.; Kowalewski, T.; Jaroniec, M.; Matyjaszewski, K. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. J. Phys. Chem. B 2005, 109, 9216–9225.

    Article  Google Scholar 

  35. Xia, Y. D.; Mokaya, R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Adv. Mater. 2004, 16, 1553–1558.

    Article  Google Scholar 

  36. Xia, Y. D.; Yang, Z. X.; Mokaya, R. Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. J. Phys. Chem. B 2004, 108, 19293–19298.

    Article  Google Scholar 

  37. Su, F.; Zhao, X. S.; Wang, Y.; Wang, L.; Lee, J. Y. Hollow carbon spheres with a controllable shell structure. J. Mater. Chem. 2006, 16, 4413–4419.

    Article  Google Scholar 

  38. Wang, Y.; Su, F. B.; Lee, J. Y.; Zhao, X. S. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage. Chem. Mater. 2006, 18, 1347–1353.

    Article  Google Scholar 

  39. Chen, X.; Kierzek, K.; Jiang, Z.; Chen, H.; Tang, T.; Wojtoniszak, M.; Kalenczuk, R. J.; Chu, P. K.; Borowiak-Palen, E. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter. J. Phys. Chem. C 2011, 115, 17717–17724.

    Article  Google Scholar 

  40. Brun, N.; Wohlgemuth, S. A.; Osiceanu, P.; Titirici, M. M. Original design of nitrogen-doped carbon aerogels from sustainable precursors: Application as metal-free oxygen reduction catalysts. Green Chem. 2013, 15, 2514–2524.

    Article  Google Scholar 

  41. Hu, B.; Wang, K.; Wu, L.; Yu, S. H.; Antonietti, M.; Titirici, M. M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828.

    Article  Google Scholar 

  42. Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.

    Article  Google Scholar 

  43. Zhang, P.; Yuan, J.; Fellinger, T. P.; Antonietti, M.; Li, H.; Wang, Y. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew. Chem. Int. Ed. 2013, 52, 6028–6032.

    Article  Google Scholar 

  44. Wang, J.; Xu, Z.; Gong, Y. T.; Han, C. L.; Li, H. R.; Wang, Y. One-step production of sulfur and nitrogen co-doped graphitic carbon for oxygen reduction: Activation effect of oxidized sulfur and nitrogen. ChemCatChem. 2014, 6, 1204–1209.

    Google Scholar 

  45. Sun, X.; Li, Y. Hollow carbonaceous capsules from glucose solution. J. Colloid Interface Sci. 2005, 291, 7–12.

    Article  Google Scholar 

  46. Ikeda, S.; Tachi, K.; Ng, Y. H.; Ikoma, Y.; Sakata, T.; Mori, H.; Harada, T.; Matsumura, M. Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls. Chem. Commun. 2007, 4335–4340.

    Google Scholar 

  47. Hampsey, J. E.; Hu, Q.; Rice, L.; Pang, J.; Wu, Z.; Lu, Y. A general approach towards hierarchical porous carbon particles. Chem. Commun. 2005, 3606–3608.

    Google Scholar 

  48. Kubo, S.; White, R. J.; Yoshizawa, N.; Antonietti, M.; M., T. M. Ordered carbohydrate-derived porous carbons. Chem. Mater. 2011, 23, 4882–4885.

    Article  Google Scholar 

  49. Cui, X.; Antonietti, M.; Yu, S. H. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small 2006, 2, 756–759.

    Article  Google Scholar 

  50. Titirici, M. M.; Thomas, A.; Antonietti, M. Replication and coating of silica templates by hydrothermal carbonization. Adv. Funct. Mater. 2007, 17, 1010–1018.

    Article  Google Scholar 

  51. Kubo, S.; Tan, I.; White, R. J.; Antonietti, M.; Titirici, M. M. Template synthesis of carbonaceous tubular nanostructures with tunable surface properties. Chem. Mater. 2010, 22, 6590–6597.

    Article  Google Scholar 

  52. Zhang, H.; Wang, Y.; Wang, D.; Li, Y.; Liu, X.; Liu, P.; Yang, H.; An, T.; Tang, Z.; Zhao, H. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small 2014, in press. DOI: 10.1002/smll.201400781.

    Google Scholar 

  53. Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24, 2037–2041.

    Article  Google Scholar 

  54. Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89.

    Article  Google Scholar 

  55. Paraknowitsch, J. P.; Zhang, J.; Su, D.; Thomas, A.; Antonietti, M. Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 2010, 22, 87–92.

    Article  Google Scholar 

  56. Shao, Y. Y.; Sui, J. H.; Yin, G. P.; Gao, Y. Z. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B: Environ. 2008, 79, 89–99.

    Article  Google Scholar 

  57. Xu, X.; Li, Y.; Gong, Y.; Zhang, P.; Li, H.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012, 134, 16987–16990.

    Article  Google Scholar 

  58. Han, C. L.; Wang, J.; Gong, Y. T.; Xu, X.; Li, H.; Wang, Y. Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 2014, 2, 605–609.

    Article  Google Scholar 

  59. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  60. Stöber, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  61. Kim, J. H.; Yoon, S. B.; Kim, J. Y.; Chae, Y. B.; Yu, J. S. Synthesis of monodisperse silica spheres with solid core and mesoporous shell: Morphological control of mesopores. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 313–314, 77–81.

    Article  Google Scholar 

  62. Yang, W.; Fellinger, T. P.; Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 2011, 133, 206–209.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Wang, S., Wang, J. et al. Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 7, 1809–1819 (2014). https://doi.org/10.1007/s12274-014-0540-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0540-x

Keywords

Navigation