Skip to main content
Log in

Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, for the first time, polymeric precursors have been used in the preparation of yolk-shell powders using a large-scale spray drying process. An esterification reaction between the carboxyl group of citric acid and the hydroxyl group of ethylene glycol inside the droplet produced organic polymers during the drying process of the droplet. During the spray drying process, the polymeric precursors enabled the formation of multi-shell cobalt oxide yolk-shell powders with superior electrochemical properties. The maximum number of shells of the particles in the yolk-shell powders post-treated at 300, 400, and 500 °C were six, five, and four, respectively. The initial discharge capacities of the cobalt oxide yolk-shell powders post-treated at 300, 400, and 500 °C were 1,188, 1,331, and 1,110 mAh·g−1, and their initial charge capacities were 868, 1,005, and 798 mAh·g−1, respectively. The discharge capacities of the powders post-treated at 300, 400, and 500 °C after 100 cycles were 815, 958, and 670 mAh·g−1, respectively, and their corresponding capacity retentions measured after the first cycles were 92%, 93%, and 82%, respectively. The pure phase Co3O4 yolk-shell powders post-treated at 400 °C had low charge transfer resistance and high lithium-ion diffusion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y.; Cao, X.; Ma, Y.; Yao, J. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

    Article  Google Scholar 

  2. Xu, S.; Hessel, C. M.; Ren, H.; Yu, R.; Jin, Q.; Yang, M.; Zhao, H.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

    Article  Google Scholar 

  3. Liu, J.; Hartono, S. B.; Jin, Y. G.; Li, Z.; Lu, G. Q.; Qiao, S. Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. J. Mater. Chem. 2010, 20, 4595–4601.

    Article  Google Scholar 

  4. Sun, Z.; Xie, K. P.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W. G.; Muhler, M.; Ventosa, E. Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-ion batteries. Chem. Eur. J. 2014, 20, 2022–2030.

    Article  Google Scholar 

  5. Tartaj, P.; Amarilla, J. M. Porous inorganic nanostructures with colloidal dimensions: Synthesis and applications in electrochemical energy devices. Chem. Commun. 2014, 50, 2077–2088.

    Article  Google Scholar 

  6. Yao, Y.; Liu, H. C.; Li, G.; Peng, H.; Chen, K. Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries. Mater. Chem. Phys. 2014, 143, 867–872.

    Article  Google Scholar 

  7. Ru, Y.; Evans, D. G.; Zhu, H.; Yang, W. S. Facile fabrication of yolk-shell structured porous Si-C microspheres as effective anode materials for Li-ion batteries. RSC Adv. 2014, 4, 71–75.

    Article  Google Scholar 

  8. Xie, Q. S.; Zhang, X. Q.; Wu, X. B.; Wu, H.; Liu, X.; Yue, G.; Yang, Y.; Peng, D. L. Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries. Electrochim. Acta 2014, 125, 659–665.

    Article  Google Scholar 

  9. Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 123, 2790–2793.

    Article  Google Scholar 

  10. Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N.; Yi, L.; Zhai, J.; Wang, D.; Tang, Z.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.

    Article  Google Scholar 

  11. Wang, J.; Yang, N.; Tang, H.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 6417–6420.

    Article  Google Scholar 

  12. Dong, Z. H.; Ren, H.; Hessel, C. M.; Wang, J. Y.; Yu, R. B.; Jin, Q.; Yang, M.; Hu, Z. D.; Chen, Y. F.; Tang, Z. Y. et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 2014, 26, 905–909.

    Article  Google Scholar 

  13. Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.

    Article  Google Scholar 

  14. Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.

    Article  Google Scholar 

  15. Ko, Y. N.; Kang, Y. C.; Park, S. B. A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale 2013, 5, 8899–8903.

    Article  Google Scholar 

  16. Choi, S. H.; Kang, Y. C. Ultrafast synthesis of yolk-shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 26, 2312–2316.

    Article  Google Scholar 

  17. Choi, S. H.; Kang, Y. C. Synthesis of yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small 2014, 10, 474–478.

    Article  Google Scholar 

  18. Choi, S. H.; Kang, Y. C. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties. Chem. Eur. J. 2014, 20, 3014–3018.

    Article  Google Scholar 

  19. Zhou, L.; Xu, H. Y.; Zhang, H. W.; Yang, J.; Hartono, S. B.; Qian, K.; Zou, J.; Yu, C. Z. Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. Chem. Commun. 2013, 49, 8695–8697.

    Article  Google Scholar 

  20. Choi, S. H.; Kang, Y. C. Kilogram-scale production of SnO2 yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive. Chem. Eur. J. 2014, 20, 5835–5839.

    Article  Google Scholar 

  21. Son, M. Y.; Kim, J. H.; Kang, Y. C. Study of Co3O4 mesoporous nanosheets prepared by a simple spray-drying process and their electrochemical properties as anode material for lithium secondary batteries. Electrochim. Acta 2014, 116, 44–50.

    Article  Google Scholar 

  22. Chen, J. S.; Zhu, T.; Hu, Q. H.; Gao, J. J.; Su, F.; Qiao, S. Z.; Lou, X. W. Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces 2010, 2, 3628–3625.

    Article  Google Scholar 

  23. Zhan, L.; Wang, S.; Ding, L. X.; Li, Z.; Wang, H. Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochim. Acta 2014, 135, 35–41.

    Article  Google Scholar 

  24. Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22,861–871.

    Article  Google Scholar 

  25. Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin, J. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761.

    Article  Google Scholar 

  26. Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

    Article  Google Scholar 

  27. Zhang, M.; Uchaker, E.; Hu, S.; Zhang, Q.; Wang, T.; Cao, G. Z.; Li, J. CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithiumion batteries with enhanced properties. Nanoscale 2013, 5, 12342–12349.

    Article  Google Scholar 

  28. Son, M. Y.; Hong, Y. J.; Kang, Y. C. Superior electrochemical properties of Co3O4 yolk-shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chem. Commun. 2013, 49, 5678–5680.

    Article  Google Scholar 

  29. Zhang, M.; Yan, F.; Tang, X.; Li, Q. H.; Wang, T. H.; Cao, G. Z. Flexible CoO-graphene-carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. J. Mater. Chem. A 2014, 2, 5890–5897.

    Article  Google Scholar 

  30. Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S.; Li, C. Z.; Zuo, Y. H.; Liu. S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high Lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

    Article  Google Scholar 

  31. Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for Lithium ion batteries. ChemSusChem 2010, 3, 236–239.

    Article  Google Scholar 

  32. He, X. F.; Wu, Y.; Zhao, F.; Wang, J. P.; Jiang, K.; Fan, S. Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J. Mater. Chem. A 2013, 1, 11121–11125.

    Article  Google Scholar 

  33. Chen, C. H.; Hwang, B. J.; Do, J. S.; Weng, J. H.; Venkateswarlu, M.; Cheng, M. Y.; Santhanam, R.; Ragavendran, K.; Lee, J. F.; Chen, J. M. et al. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem. Commun. 2010, 12, 496–498.

    Article  Google Scholar 

  34. Jayaprakash, N.; Jones, W. D.; Moganty, S. S.; Archer, L. A. Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization. J. Power Sources 2012, 200, 53–58.

    Article  Google Scholar 

  35. Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

    Article  Google Scholar 

  36. Huang, G. Y.; Xu, S. M.; Lu, S.; Li, L. Y.; Sun, H. Micro-/ nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243.

    Article  Google Scholar 

  37. Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.

    Article  Google Scholar 

  38. Kim, J. H.; Kang, Y. C. Electrochemical properties of micron-sized, spherical, meso- and macro-porous Co3O4 and CoO-carbon composite powders prepared by two-step spray drying process. Nanoscale 2014, 6, 4789–4795.

    Article  Google Scholar 

  39. Zhanga, P.; Guo, Z. P.; Huang, Y.; Jia, D.; Liu, H. K. Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J. Power Sources 2011, 196, 6987–6991.

    Article  Google Scholar 

  40. Rai, A. K.; Gim, J. H.; Anh, L. T.; Kim, J. K. Partially reduced CO3O4/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim. Acta 2013, 100, 63–71.

    Article  Google Scholar 

  41. Ju, S. H.; Kang, Y. C. The characteristics of Ni-Co-Mn-O precursor and Li(Ni1/3Co1/3Mn1/3)O2 cathode powders prepared by spray pyrolysis. Ceram. Inter. 2009, 35, 1205–1210.

    Article  Google Scholar 

  42. Ju, S. H.; Kang, Y. C. Effects of types of drying control chemical additives on the morphologies and electrochemical properties of Li4Ti5O12 anode powders prepared by spray pyrolysis. J. Alloys Compd. 2010, 506, 913–916.

    Article  Google Scholar 

  43. Li, X.; Agarwal, V.; Liu, M.; Rees, W. S. Investigation of the mechanism of sol-gel formation in the Sr(NO3)2/citric acid/ethylene glycol system by solution state 87Sr nuclear magnetic resonance spectroscopy. J. Mater. Res. 2000, 15, 2393–2399.

    Article  Google Scholar 

  44. Koo, H. Y.; Ju, S. H.; Hong, S. K.; Jung, D. S.; Kang, Y. C.; Jung, K. Y. Effect of boric acid flux and drying control chemical additive on the characteristics of Y2O3:Eu phosphor particles prepared by spray pyrolysis. Jpn. J. Appl. Phys. 2006, 45, 9083–9087.

    Article  Google Scholar 

  45. Jung, D. S.; Hong, S. K.; Lee, H. J.; Kang, Y. C. Gd2O3:Eu phosphor particles prepared from spray solution containing boric acid flux and polymeric precursor by spray pyrolysis. Optic. Mater. 2006, 28, 530–535.

    Article  Google Scholar 

  46. Koo, H. Y.; Ju, S. H.; Jung, D. S.; Hong, S. K.; Kim, D. Y.; Kang, Y. C. Morphology control of Gd2O3:Eu phosphor particles with cubic and monoclinic phases prepared by high-temperature spray pyrolysis. Jpn. J. Appl. Phys. 2006, 45, 5018–5022.

    Article  Google Scholar 

  47. Kang, Y. C.; Roh, H. S.; Park, S. B.; Jung, K. Y. Red-emitting phosphor particles with spherical shape, dense morphology, and high luminescent efficiency under ultraviolet. Jpn. J. Appl. Phys. 2004, 43, 5302–5306.

    Article  Google Scholar 

  48. Bujans, F. B.; Martinez, R.; Ortiz, P. Structural characterization of oligomers from the polycondensation of citric acid with ethylene glycol and long-chain aliphatic alcohols. J. Appl. Poly. Sci. 2003, 88, 302–306.

    Article  Google Scholar 

  49. Ko, Y. N.; Park, S. B.; Jung, K. Y.; Kang, Y. C. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries. Nano Lett. 2013, 13, 5462–5466.

    Article  Google Scholar 

  50. Li, G.; Xu, L.; Hao, Q.; Wang, M.; Qian, Y. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Adv. 2012, 2, 284–291.

    Article  Google Scholar 

  51. Du, X. Y.; He, W.; Zhang, X. D.; Yue, Y. Z.; Liu, H.; Zhang, X. G.; Min, D. D.; Ge, X.; Du, Y. Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. J. Mater. Chem. 2012, 22, 5960–5969.

    Article  Google Scholar 

  52. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  53. Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. J. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J. Mater. Chem. 2011, 21, 10206–10218.

    Article  Google Scholar 

  54. Xu, X.; Rout, C. S.; Yang, J.; Cao, R.; Oh, P.; Shin, H. S.; Cho, J. P. Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. J. Mater. Chem. A 2013, 1, 14548–14554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Kul Lee or Yun Chan Kang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G.D., Lee, JH., Lee, JK. et al. Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties. Nano Res. 7, 1738–1748 (2014). https://doi.org/10.1007/s12274-014-0533-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0533-9

Keywords

Navigation