Skip to main content
Log in

Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm−1 under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified by graphene dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F., Can graphene be used as a substrate for Raman enhancement? Nano Lett. 2010, 10, 553–561.

    Article  Google Scholar 

  2. Ling, X.; Zhang, J., First-layer effect in graphene-enhanced Raman scattering. Small 2010, 6, 2020–2025.

    Article  Google Scholar 

  3. Ling, X.; Wu, J.; Xu, W.; Zhang, J. Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy. Small 2012, 8, 1365–1372.

    Article  Google Scholar 

  4. Xu, H.; Chen, Y. B.; Xu, W. G.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. Small 2011, 7, 2945–2952.

    Article  Google Scholar 

  5. Xu, H.; Xie, L. M.; Zhang, H. L.; Zhang, J. Effect of graphene fermi level on the Raman scattering intensity of molecules on graphene. ACS Nano 2011, 5, 5338–5344.

    Article  Google Scholar 

  6. Ling, X.; Wu, J.; Xie, L.; Zhang, J. Graphene-thickness-dependent graphene-enhanced Raman scattering. J Phys. Chem. C 2013, 117, 2369–2376.

    Article  Google Scholar 

  7. Ling, X.; Moura, L. G.; Pimenta, M. A.; Zhang, J. Chargetransfer mechanism in graphene-enhanced Raman scattering. J. Phys. Chem. C 2012, 116, 25112–25118.

    Article  Google Scholar 

  8. Thrall, E. S.; Crowther, A. C.; Yu, Z.; Brus, L. E. R6G on graphene: High Raman detection sensitivity, yet decreased Raman cross-section. Nano Lett 2012, 12, 1571–1577.

    Article  Google Scholar 

  9. Penzkofer, A.; Drotleff, E.; Holzer, W. Optical constants measurement of single-layer thin films on transparent substrates. Opt. Commun. 1998, 158, 221–230.

    Article  Google Scholar 

  10. Shim, S.; Stuart, C. M.; Mathies, R. A. Resonance Raman cross-sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem 2008, 9, 697–699.

    Article  Google Scholar 

  11. Zhang, J.; Xie, L. M.; Ling, X.; Fang, Y.; Liu, Z. F. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc. 2009, 131, 9890–9891.

    Article  Google Scholar 

  12. Matousek, P.; Towrie, M.; Ma, C.; Kwok, W. M.; Phillips, D.; Toner, W. T.; Parker, A. W. Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. J. Raman Spectrosc. 2001, 32, 983–988.

    Article  Google Scholar 

  13. Volkmer, A. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. J. Phys. D-Appl. Phys. 2005, 38, R59–R81.

    Article  Google Scholar 

  14. Le Ru, E. C.; Schroeter, L. C.; Etchegoin, P. G. Direct measurement of resonance Raman spectra and cross sections by a polarization difference technique. Anal. Chem. 2012, 84, 5074–5079.

    Article  Google Scholar 

  15. Le Ru, E.; Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects; Elsevier Science: Amsterdam, 2008.

    Google Scholar 

  16. Palik, E. D. Handbook of Optical Constants of Solids: Index, Vol. 3; Academic Press, 1998.

  17. Soper, S. A.; Nutter, H. L.; Keller, R. A.; Davis, L. M.; Shera, E. B. The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. Photochem Photobiol 1993, 57, 972–977.

    Article  Google Scholar 

  18. Huang, C. S.; Kim, M.; Wong, B. M.; Safron, N. S.; Arnold, M. S.; Gopalan, P. Raman enhancement of a dipolar molecule on graphene. J Phys Chem C 2014, 118, 2077–2084.

    Article  Google Scholar 

  19. Zhao, J.; Jensen, L.; Sung, J. H.; Zou, S. L.; Schatz, G. C.; Van Duyne, R. P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 2007, 129, 7647–7656.

    Article  Google Scholar 

  20. Auguie, B.; Reigue, A.; Le Ru, E. C.; Etchegoin, P. G. Tiny peaks vs. mega backgrounds: A general spectroscopic method with applications in resonant Raman scattering and atmospheric absorptions. Anal. Chem. 2012, 84, 7938–7945.

    Article  Google Scholar 

  21. Clark, R. J. H.; Dines, T. J. Resonance Raman-spectroscopy, and its application to inorganic-chemistry. Angew. Chem.-Int. Ed. 1986, 25, 131–158.

    Article  Google Scholar 

  22. Jensen, L.; Aikens, C. M.; Schatz, G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37, 1061–1073.

    Article  Google Scholar 

  23. Thorn, D. L.; Fultz, W. C. Rhodamine complexes. Preparation, photophysical properties, and the structure of [Rh(rhodamine) (CO)(P(tol)3)2][SbF6]. J. Phys. Chem. 1989, 93, 1234–1243.

    Article  Google Scholar 

  24. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 2007, 129, 7647–7656.

    Article  Google Scholar 

  25. Zhang, X. F.; Liu, S. P.; Shao, X. N. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: The effect of the molecular structure revealed by a photophysical study. Spectrochim Acta A 2013, 113, 92–99.

    Article  Google Scholar 

  26. Xu, W.; Mao, N.; Zhang, J. Graphene: A platform for surface-enhanced Raman spectroscopy. Small 2013, 9, 1206–1224.

    Article  Google Scholar 

  27. Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. P. Natl. Acad. Sci. USA 2012, 109, 9281–9286.

    Article  Google Scholar 

  28. Wang, X. T.; Shi, W. S.; She, G. W.; Mu, L. X. Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. J. Am. Chem. Soc. 2011, 133, 16518–16523.

    Article  Google Scholar 

  29. Yang, L. B.; Jiang, X.; Ruan, W. D.; Zhao, B.; Xu, W. Q.; Lombardi, J. R. Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: Charge-transfer contribution. J. Phys. Chem. C 2008, 112, 20095–20098.

    Article  Google Scholar 

  30. Jensen, L.; Schatz, G. C. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. J. Phys. Chem. A 2006, 110, 5973–5977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Xu, W., Wang, J. et al. Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation. Nano Res. 7, 1271–1279 (2014). https://doi.org/10.1007/s12274-014-0490-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0490-3

Keywords

Navigation